LED倒装芯片设计的布线技术解析(上)

最新更新时间:2015-02-21来源: 互联网关键字:LED  倒装芯片 手机看文章 扫描二维码
随时随地手机看文章
 本文介绍了在伪单层上完成重新布线层布线的一种方法。这些技术将重新布线层的布线问题转变成为典型的通道布线问题。

  利用这种方法可以做到百分之百的布通率,并且最大限度地减小了两层布线的面积。

  工程师在倒装芯片设计中经常使用重新布线层(RDL)将I/O焊盘重新分配到凸点焊盘,整个过程不会改变I/O焊盘布局。

  然而,传统布线能力可能不足以处理大规模的设计,因为在这些设计中重新布线层可能非常拥挤,特别是在使用不是最优化的I/O凸点分配方法情况下。这种情况下即使采用人工布线,在一个层内也不可能完成所有布线。

  随着对更多输入/输出(I/O)要求的提高,传统线绑定封装将不能有效支持上千的I/O。倒装芯片装配技术被广泛用于代替线绑定技术,因为它不仅能减小芯片面积,而且支持多得多的I/O。

  倒装芯片还能极大地减小电感,从而支持高速信号,并拥有更好的热传导性能。倒装芯片球栅阵列(FCBGA)也被越来越多地用于高I/O数量的芯片。

  图1:倒装芯片横截面:信号线经过包括重新布线层在内的三个面。

  重新布线层(RDL)是倒装芯片组件中芯片与封装之间的接口界面(图1)。重新布线层是一个额外的金属层,由核心金属顶部走线组成,用于将裸片的I/O焊盘向外绑定到诸如凸点焊盘等其它位置。

  凸点通常以栅格图案布置,每个凸点都浇铸有两个焊盘(一个在顶部,一个在底部),它们分别连接重新布线层和封装基板。因此重新布线层被用作连接I/O焊盘和凸点焊盘的层。

  图2:自由分配(FA)和预分配(PA)是两种焊盘分配方法。外围I/O(PI/O)和区域I/O(AI/O)是两种倒装芯片结构。  倒装芯片结构与焊盘分配

  以往研究已经明确了两种倒装芯片结构和两种焊盘分配方法,如图2所示。自由分配(FA)和预分配(PA)是两种焊盘分配方法,而外围I/O(PI/O)和区域I/O(AI/O)是两种倒装芯片结构。

  两种焊盘分配方法的区别在于凸点焊盘和I/O焊盘之间的映射是否定义为输入。自由分配的问题是,每个I/O焊盘都可以自由分配到任意凸点焊盘,因此分配与布线需要一起考虑。而对预分配来说,每个I/O焊盘必须连接指定的凸点焊盘,因此需要解决复杂的交叉连接问题。预分配问题的解决比自动分配要难,但对设计师来说则更加方便。

  两种倒装芯片结构分别代表不同的I/O布局图案。AI/O和PI/O的挑战分别在于将I/O放在中心区域和将I/O放在裸片外围。目前PI/O更加流行,因为它简单,设计成本低,虽然AI/O理论上可以提供更好的性能。

  图3给出了一个PI/O例子。

  外围一圈绿色矩形代表I/O焊盘。红色和黄色圆圈代表电源和地凸点,而蓝色圆圈代表信号凸点。位于裸片中央的那些电源/地凸点被分类为网状类型,信号凸点被分类为栅格类型。


  图3:重新布线层顶视图,图中显示了栅格图案的凸点焊盘和外围的I/O焊盘。

  上述所有工作都集中在单层布线。它们将布线限制在一个金属层,每个网络都必须在这个层完成布线。一般的目标是尽可能地减少走线长度。优化算法需要在布通率为100%的前提下完成。这种方法被证明可以很好地解决每种重新布线层的布线问题,前提是存在单层解决方案。

  实用的重新布线层布线方案

  重新布线层布线和凸点分配都是额外的实现任务,它们有助于设计从线绑定过渡到倒装芯片。凸点分配的意思是将每个凸点分配到指定的I/O焊盘。由于对大多数设计来说I/O焊盘位于裸片外围,因此飞线和信号走线看起来像是从芯片中心到四周边界的网状图案。

  图3显示的是一个使用两层重新布线层的真实比例设计例子。金属层10(M10)和金属层9(M9)完成所有信号网络布线,并分别实现电源/地(PG)网格和电源布线。通常有数量众多的信号网络需要布线。凸点焊盘的占用面积比较大,在布线阶段常被认为是影响布线的障碍。

  图4:拥挤的重新布线层的布线解决方案。

  图4(a)显示了一个拥挤的重新布线层例子,其中netA、netB……netF这6条网络显示为飞线。这种设计如此拥塞,以致于在单个层(如M10)上根本不可能达到100%的布通率。一种解决方案是增加重新布线层(如M10)的面积。这相当于增加裸片尺寸,如图4(b)所示。

  另外一种解决方案是再增加一层重新布线层(如M11),如图4(c)所示。虽然从工程角度看具有实际可操作性,但从成本角度看两种解决方案都是不可接受的。

关键字:LED  倒装芯片 编辑:探路者 引用地址:LED倒装芯片设计的布线技术解析(上)

上一篇:缩减高功率LED开发之CFD模拟散热
下一篇:LED倒装芯片设计的布线技术解析(下)

推荐阅读最新更新时间:2023-10-12 22:52

台湾科学家研制出氧化锌白光发光二极管(LED
    台湾的科学家最近以氧化锌(ZnO)/蓝光有机材料复合薄膜,制作出白光发光二极管(LED)。他们利用水热法(hydrothermalmethod),成功地在蓝光有机发光薄膜上生长无机ZnO纳米柱(nanorod)阵列。此技术有别于传统LED的外延生长制作方式,不仅方法简单且全程低温,对于未来发展白光光源极具吸引力。     一般白光发光二极管可分为无机及有机两类。过去无机白光发光组件的制作需考虑材料晶格匹配的问题,且需要高真空高温的制程设备,因此制造成本高昂;而有机白光发光组件在白光材料的开发上需要昂贵且复杂的化学反应,若是由三层RGB有机材料所组成的白光组件,还需顾虑到各层材料发光强度及寿命不一致的问题 发
[电源管理]
LED点彩压阶传输技术
随着LED全彩驱动IC涌现,市场竞争相当的激烈,但总体上的发展趋势来说,LED全彩驱动IC逐渐改为单总线驱动,因为单总线驱动IC更加智能,可靠稳定性增强,工程应用更加简便,同时还能节省线材成本,如CYT3015、CYT3005、CYT3006、CYT3020等等。LED全彩单总线信号驱动IC在工程应用上给工程设计人员带来了更多的信心。压阶传输技术应用在单线传输技术基础上,就显得格外的简便,下面我们就以LED全彩单总线驱动IC—CYT3015为驱动芯片,来介绍压阶传输技术在LED点彩技术的应用。   1. 压阶的概念及压阶传输的产生背景   说了这么久,很多人或许有个疑问,那就是到底什么叫压阶呢?其实压阶就是在两点之间,不同
[电源管理]
<font color='red'>LED</font>点彩压阶传输技术
恩智浦推数字LED驱动器IC平台,助力智能照明
6月中旬,恩智浦推出了全新的单级驱动器数字IC系列,包括4 W至50 W灯功率的SSL5301T、SSL5306T、SSL5307T、SSL5511T和SSL5101T LED驱动器解决方案,用于紧凑型、高效率、高性能和极具成本效益的普通LED照明解决方案。 其中,SSL5301T、SSL5306T和SSL5307T针对市电可调光(断相可调光)LED驱动器解决方案优化。它们可以检测所有已知市电调光器类型,并通过多种途径将调光器设置转换为连续LED电流。这样便能以合理的价格提供极佳的调光器兼容性能 。SSL5511T针对离线可调光LED驱动器解决方案优化,带有控制输入信号,可用来调光远程控制灯具和最高50 W的智能灯
[电源管理]
恩智浦推数字<font color='red'>LED</font>驱动器IC平台,助力智能照明
苹果将投入micro-LED屏幕研发 首批产品用于3代Apple Watch
根据美国科技新闻网站 AppleInsider 报导,在 2017 年稍后,苹果将会开始生产 micro-LED 屏幕,初期将用于第 3 代苹果手表 (Apple Watch),用以取代目前苹果手表上所使用的 OLED 屏幕。 报导指出,在面板领域,苹果过去没有相关的技术准备。不过,在 2014 年,苹果收购了一家名为 LuxVue 的公司,获得了该公司的 micro-LED 技术之后,在过去几年时间里,这种面板技术开始引发了产业界的关注,而苹果也在积极进行相关产品的开发。2017 年 2 月,苹果透过 LuxVue 取得了一项专利,其主要是有关 micro-LED 屏幕上识别指纹的功能。如此,苹果未来就可以顺利取消手机中专用的指
[手机便携]
自带铅酸蓄电池充电LED应急灯电路图
  根据实物画出的电路工作原理图如图5所示,220V交流市电经电容降压、二极管整流后给铅酸蓄电池充电,红色LED作充电指示。充好电后使用时闭合按钮开关K,将首先接通3颗彩色闪烁LED,发出梦幻般变化莫测的七彩光芒,在夜间平添一些生活乐趣,再按一下开关K则关闭彩色闪烁LED,接着再按才会接通24颗并联的高亮LED,由于数目较多,照明效果很好。   当铅酸电池电压为4V时,实测彩灯工作电流约60mA,高亮LED电流竟达600多mA。这样大的电流不仅使得每次充满电后照明时间不会太长,而且会对电池内部结构造成损伤,缩短使用寿命,因此必须给高亮LED串入一个小阻值限流电阻,经多次试验选定1.2Ω时工作电流最终降为320mA,而亮度变化不太明
[电源管理]
自带铅酸蓄电池充电<font color='red'>LED</font>应急灯电路图
如何应用陶瓷电容控制LED球泡灯的噪声并实现平滑功能?
近来,对电子设备除了早前的小且薄,节能,低噪等要求外,更有望以防止全球气候变暖为视点达到生态所需。在这样的市场需求下,从2009年开始普及的LED球泡灯在达到了小且薄的同时还因使用寿命长而实现了高生态性,对于其搭载的电子元器件同样也被要求小型薄型化,使用寿命长。 LED球泡灯因配备了功率为10W左右的小功率电源,主要是使用电解电容和薄膜电容器达到了平滑功能,但使用小型且更长寿命的陶瓷电容器的事例也在增加。 比传统的陶瓷材料能获得更高静电容量的陶瓷电容器,本文将对其特性进行介绍,并介绍以LED球泡灯为主的其他电子设备的电源推荐使用电路。 新材料陶瓷电容器的性能 新材料陶瓷的特性与传统材料相比,居里点转移至低温侧,使其在
[电源管理]
如何应用陶瓷电容控制<font color='red'>LED</font>球泡灯的噪声并实现平滑功能?
全面解析40种芯片常用的LED封装技术
LED封装 技术大都是在分立器件封装技术基础上发展与演变而来的,但却有很大的特殊性。一般情况下,分立器件的管芯被密封在封装体内,封装的作用主要是保护管芯和完成电气互连。而 LED 封装则是完成输出电信号,保护管芯正常工作。现给大家介绍40种封装技术。    1、BGA封装(ballgridarray)   球形触点陈列,表面贴装型封装之一。在印刷基板的背面按陈列方式制作出球形凸点用以代替引脚,在印刷基板的正面装配LSI芯片,然后用模压树脂或灌封方法进行密封。也称为凸点陈列载体(PAC)。引脚可超过200,是多引脚LSI用的一种封装。封装本体也可做得比QFP(四侧引脚扁平封装)小。例如,引脚中心距为1.5mm的360引脚BGA仅
[电源管理]
全面解析40种<font color='red'>芯片</font>常用的<font color='red'>LED</font>封装技术
Vishay的高密度LED可替代TLM系列
Vishay Intertechnology公司近日推出高亮度SMD LED产品,该器件支持无铅回流焊工艺,并可替代Vishay的TLM系列产品。 VLM系列LED可用于汽车仪表板、收音机与开关、电信系统指示器与背光、音频/视频设备、办公设备以及平板背光的LCD/开关/标记背光照明。 VLM LED符合JEDEC-STD-020b标准,并具有与TLM器件相同的指标,能够方便地替代MiniLED(50mcd)、PLCC-2(240mcd)和PLCC-4(1,250mcd)的TML LED。此外该系列LED还符合RoHS规范,支持CECC 00802和JEDEC-STD-020b标准下的IR回流、气相及波峰焊等工艺。
[新品]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved