实现LED路灯网络的智能监控

最新更新时间:2015-03-29来源: 互联网关键字:LED路灯  网络  智能监控 手机看文章 扫描二维码
随时随地手机看文章
城市道路照明越来越多采用LED照明技术代替传统的照明技术,其目的是为了降低对电能的消耗。由于LED使用低压直流电源,便于附加检测与控制电路,这对路灯网络的智能化管理,进一步节能降耗带来了方便。对于路灯网络的管理与控制,既可以采用电力载波通信技术,也可技术的快速发展,使得短距离无线通信技术在应用成本、可靠性与通信速率等方面均已优于电力载波通信技术,例如Zigbee短距离无线通信技术。本文提出一种解决方案,采用短距离无线通信技术构建LED路灯无线传感网络,能对LED路灯网络任意单盏灯或多盏灯或全网络所有灯进行开关、调光等控制,进行发光亮度、电流参数等检测,从而实现对LED路灯网络的智能化管理。作为无线传感网络,其体系结构应该包含四个基本层次:物理层和数据链路层、网络层以及应用层。LED路灯无线传感网络采用IEEE 802.15.4标准作为其物理层和数据链路层的技术标准,网络层与应用层集成在一起,采用单跳、双跳以及变跳3种接力通信模式作为网络协议的基础。本文围绕LED无线传感网络的体系结构,以网络拓扑及通信节点的组成为基础,论述了网络层的协议包格式、路由工作原理,以及节点通信的设计流程。

网络体系

无线传感网络的网络体系是网络层实现路由的基础,包括节点组成及网络拓扑结构。

路灯传感网络节点的组成

路灯网络由间隔均匀的若干盏路灯组成,每一盏LED路灯均为网络的一个通信节点,用来构建无线传感网络。图1所示,为构建无线传感网络LED路灯节点的组成,除了照明部分的电路外,还附加了对LED电流的采样、LED发光亮度的检测、以及对LED发光亮度的PWM控制等电路。每一盏LED路灯既是传感器节点也是网络路由节点;每一个节点包含一个微控制器(MCU,如cc2530),都具有射频通信功能,既能发送信号也能接收信号;每一个节点具有32bit(位)的唯一ID号。通过在物理层和MAC层采用IEEE 802.15.4协议标准,结合网络层与应用层的协议,所有这些节点有机地组合在一起,便构成了LED路灯无线传感网络。由于现有的一些网络层与应用层协议如Zigbee、RF4CE等并不是很适合LED路灯传感网络应用,因此,需要重新设计网络层与应用层协议。

 

 

网络拓扑

根据LED路灯的分布规律,每盏LED路灯作为网络节点构成无线通信网络,其拓扑结构如图2所示,(a)是信号逐点(单跳)接力传送拓扑结构图,(b)是信号隔点(双跳)接力传送拓扑结构图。为便于下文网络应用协议的设计与讨论,作出如下定义:

(1)所有节点可分为2类,即LED路灯节点(简称LED节点,如a1 a2 … an , b1 b2 … bn)和路灯控制器节点(简称控制节点,如a,b);

(2)相邻节点之间的距离均为L,每个节点的无线信号覆盖半径大于等于2L;

(3)根据节点的相对位置,节点可分为前驱节点与后继节点,离控制器近的是前趋节点,离控制器远的是后继节点。例如a1是a2前驱节点,a3是a2后继节点;同理b2是b4前驱节点,b6是b4后继节点,以此类推。

 

 

(4)控制节点与LED节点之间,LED节点相互之间,只要无线信号可以覆盖到,都可以相互通信,不需要设基站或专门的路由协调装置。

(5)每个节点的32bit唯一ID号由两部分组成,分别为网络ID和节点地址(编号),均为16bit。同一路灯网络所有节点的网络ID相同;从控制节点开始,节点地址由小到大顺序编排。

网络协议

路灯传感网络协议包括协议包的定义与路由协议的定义,其设计目标是简单、实用,易实现。

网络协议包格式

路灯传感网络协议传输的信息包共有3种类型,分别为命令包、参数包以及应答确认包。

 

 

(1)命令包

图3(a)所示,为控制器节点对LED路灯节点下发的命令包格式。命令有三种类型:针对整个网络所有LED节点的广播命令、针对部分LED节点的群组命令以及针对单个LED节点的单点命令。

命令包各字段定义如下:

包类型:为1;

目的地址:为指定LED节点的地址;

包序列号:为向指定节点发送的包编号;

接力模式:为1时,表示单跳模式;为2时,表示双跳模式偶链;为3时,表示双跳模式奇链;

命令字段的定义方法见表1,表1只列出了部分命令,实际中可以根据需要增加命令;

表1 命令包命令字段定义

 

 

命令参数字段:用来表示调光的亮度,数值越小LED发光亮度越低,耗电越少,数值为 0时表示关灯;

跳数:命令传送到目的地址所需经过的节点数,最大值为路灯网络所有LED节点的数量。传送命令包时,每经转发一次则跳数减1,当跳数值为0时,命令包不再被转发。

(2)参数包

图3(b)所示,为LED路灯网络节点上传的参数包格式。控制节点可采用定时轮询或即时查询方式获取网络内各LED节点的状态参数,如电流值、发光亮度值等,各LED节点只有在接到读取参数的命令后才会向控制节点发送参数包。参数包各字段定义如下:

包类型:为2;

源地址:为上传参数LED节点的地址;

包序列号:为上传参数LED节点发出的参数包编号;

接力模式:由于只有在节点收到读取状态参数命令后才会发送参数包,因此,参数包的接力模式由命令包的接力模式确定;

状态标志:为0,表示对应LED节点无故障;为1,表示对应节点有故障;为2,表示对应节点及后继节点有故障;

状态参数1-3:为LED节点的有关参数,如电流值、电压值以及LED的发光亮度值等。(3)应答确认包

图3(c)所示,为应答确认包格式。为了实现可靠传输,每个节点在收到命令包或参数包后需要发送应答确认信息包。如果信息包的发送(转发)方在设定的时间内没有收到应答确认包,则会启动对该信息包的重新发送。应答确认包各字段的数值定义如下:

包类型:为3;

节点地址:发出确认应答包节点的地址。

确认类型:收到信息包的包类型;

确认号:为节点收到信息包的包序列号;

网络路由协议

路灯传感网络路由协议的核心是各节点对信息包的转发机制。由于每一个节点的信号覆盖范围有限,其信息只能向邻近的节点发送,如要将信息送往远处节点则只能依赖中间节点的多次转发。根据前述1.2定义的条件,节点转发信息包可以分为三种模式,即单跳接力模式,双跳接力模式和变跳接力模式,各LED节点将根据信息包中接力模式字段的定义进行选择。

单跳接力模式

图2(a)所示,为单跳接力模式的拓扑结构图。它是一个比较简单的转发模式,要求每个节点无线信号覆盖的半径范围大于节点间距L即可,信息包只需往邻近的前驱节点或后继节点转发。在这种模式下,节点处理收到信息包的方法如下:

①节点接收一个命令包(如图3(a))后,向前驱节点发送接收确认应答包;将命令包中的跳数减1;比较节点自身地址(NA)与命令包中目标地址的大小,相等则执行包中的命令且无须转发命令包,不等则向后继节点转发该包;如果是广播命令(目标地址值为0xffff),既在本节点执行该命令同时也向后继节点转发该命令包。转发时的路由地址为:NA+1。当命令包传送到网络中的最后一个LED节点时,跳数减1后将为0,包将不再被转发。

②节点接收到参数包(如图3(b))后,只需向后继节点发送接收确认包和向前驱节点转发,转发参数包的路由地址为:NA-1。

③节点收到命令包或参数包后,必须发送接收确认包(如图3(c)),当收到命令包时,确认类型值为1,发送应答确认包的路由地址为NA-1;当收到参数包时确认类型值为2, 发送应答确认包的路由地址为NA+1。

双跳接力模式

图2(b)所示,为双跳接力模式的拓扑结构图。这种模式要求每一个节点的无线信号覆盖半径范围≥2L。从图2可知,双跳接力模式每次跨越两个节点,传送信息包到指定节点的转发次数比单跳接力模式要少一半,因此其传送时延也要小。在双跳接力模式下,将整个网络所有LED节点按照其地址值的奇偶性分成2个接力链,即奇地址节点链和偶地址节点链。控制节点发送广播命令时,需要针对奇地址节点链和偶地址节点链分别发送,命令信息包分别在奇地址节点链和偶地址节点链上同时传播。在双跳接力模式下,节点处理收到信息包的方法如下:

①节点接收到命令包后的处理方法与单跳接力模式基本相同,但包转发时的路由地址变为:NA+2。

②同样节点接收到数据包后的处理方法也与单跳接力模式基本相同,只是在包转发时的路由地址变为:NA-2。

③节点收到命令包或参数包后,必须发送接收确认包,当收到命令包时,确认类型值为1,发送应答确认包的路由地址为NA-2;当收到参数包时确认类型值为2, 发送应答确认包的路由地址为NA+2。

无论是单跳接力模式还是双跳接力模式,节点发送命令信息包或参数信息包后,在规定的时间内未收到确认信息包,则需要重发,重发次数一般不超过3次。

变跳接力模式

变跳接力模式实际上是单跳接力模式和双跳接力模式的一种补充,主要用于下一跳节点出现通信故障时。在单跳接力模式或双跳接力模式工作时,如果在多次重发后仍收不到下一跳节点的应答确认信息包,说明下一跳节点出现了通信故障。这时通过改变接力模式,由单跳变双跳或者由双跳变单跳可以绕开下一跳有通信故障的节点,继续信息包的接力传送。同时,将故障节点的相关信息反馈到控制节点。变跳接力模式要求每一个节点的无线信号覆盖半径范围≥2L。变跳接力模式分为两种情况:

(1)初始传送为单跳接力模式

设LED节点i的地址为NAi,当LED节点i以单跳模式转发命令包(或参数包)时,即使重发,仍然收不到LED节点i+1(或i-1)的确认包,于是断定下一跳节点出现故障。这时如果传送的是命令包则从①开始执行,如果传送的是参数包则执行②,因为故障节点在传命令包时已遇上,传送参数包时遇故障节点无须重复报告故障信息。

①LED节点i向控制节点报告故障节点信息。此时,节点i向控制节点发送参数包,包的状态参数置为1,源地址为故障节点的地址,即NAi+1,发送参数包的路由地址为NAi-1。

②改变接力模式为双跳模式,将信息包转发给节点i+2(或i-2),以绕开故障节点,路由地址为NAi+2(或NAi-2),若能收到应答确认包,则本节点转发完成,否则说明遇上了两个或两个以上连续故障节点,需继续执行③。

③如果此时传送的是命令包,则LED节点i需向控制节点报告故障节点状态信息,状态参数包的状态标志置为2,源地址为故障节点的地址,即NAi+2,发送参数包的路由地址为NAi-1。随后,转发中止。

(2)初始传送为双跳接力模式

当LED节点i(地址为NAi)欲以双跳接力模式转发命令包(或参数包)时,必须对包进行分析,根据接力模式字段的值为2或3,可以判定当前为偶地址链或奇地址链接力模式。当NAi的值为奇数,跳变模式为奇链,或者NAi的值为偶数,跳变模式为偶链时,执行如下步骤①;当NAi的值为奇数,跳变模式为偶链,或者NAi的值为偶数,跳变模式为奇链时,执行如下步骤②;

①节点i以双跳接力模式转发命令包(或参数包),路由地址为NAi+2(或NAi-2),如果收不到应答确认,则下一跳节点出现故障。如果这时转发的是命令包,则需向控制节点报告故障,往其前驱节点i-2发送故障信息参数包,路由地址为NAi-2,故障信息参数包的源地址(即故障节点的地址)为NAi+2,状态标志为1。同时,改用单跳接力模式将信息包转发给节点i+1(或i-1),以绕开故障节点,转发的路由地址为NAi+1(或NAi-1);若能收到确认包,则本节点转发完成,否则执行③;

②节点i改为单跳接力模式转发命令包(或参数包),路由地址为NAi+1(或NAi-1),若能收到确认包,则本节点转发完成,否则,再改用双跳接力模式转发,将信息包转发给节点i+2(或i-2),以绕开故障节点,转发的路由地址为NAi+2(或NAi-2);若能收到确认包,则本节点转发完成,否则执行③;

③说明遇上了两个或两个以上连续故障节点,LED节点i需向控制节点报告故障节点信息。此时,节点i向控制节点发送故障参数包的状态标志为2,源地址为故障节点的地址,即NAi+1,发送参数包,路由地址为NAi-1。随后转发中止。

上述变跳接力模式能解决分散的单个通信故障节点接力传送问题。但当网络中出现连续2个或2个以上通信故障节点时,则只能报告故障节点位置而不能再继续接力传送。若要解决连续多故障节点的问题,既需要改变接力算法,也需要各节点的无线信号覆盖半径范围更大。

网络节点工作流程与协议实现

路灯传感网络上的每一个节点,既是命令执行与状态参数采集的终端节点,也是路由协调工作节点。各节点除了接收到信息包进入处理流程外,其余时间几乎都处在监听查询状态,检查是否收到信息包。图4所示为LED路灯传感网络节点的工作流程,它是网络协议在节点上实现过程的描述。

 

 

 

 

结束语

通过网络体系、网络协议、网络节点工作流程与协议实现等几个部分的详细介绍,析构了LED路灯无线传感网络的组成,希望能为LED路灯无线传感网络的应用起到抛砖引玉的作用。LED路灯无线传感网络构建的基础是点到点的通信技术,命令信息要覆盖全网络需要点到点的通信技术来完成,良好的网络协议是组建传感网络的关键所在,简易可行的网络协议是实用化的前提。实际应用表明,上述方法构建的LED路灯无线传感网络具有良好的实时性,能稳定、可靠地工作,能满足对LED路灯网络的智能化管理要求。

关键字:LED路灯  网络  智能监控 编辑:探路者 引用地址:实现LED路灯网络的智能监控

上一篇:八大方面教你辨别LED射灯优劣
下一篇:恒照度自适应调光的LED驱动器设计

推荐阅读最新更新时间:2023-10-12 22:54

爱立信测试5G网络 最高网速可达5Gbps
   据科技博客网站CNET报道,爱立信周二宣布,作为公司5G无线技术研发计划的一部分,在其日前展开的一项无线测试中,传输速度最高达到了5Gbps。该消息的确令人振奋,无线传输速度达到5Gbps,意味着比今天的LTE连接标准快了250倍,标志着无线传输速度再创新纪录。这一传输速度,无论对于智能 手机,还是汽车、医疗和其他设备而言,均将受益于此。网络达到5Gbps速度,下载一部50GB的电影仅需80秒钟,而这一速度为谷歌光纤1Gbps传输 速度的5倍。 但令人遗憾的是,目前5Gbps传输速度仅为实验室理想状态下的数据,而实际商业部署则要等到2020年。无论如何,爱立信这一测试速度为未来的高速无线传输提供了理论支持。 鉴于这一5G
[手机便携]
丰田打算将汽车变成热点 组建一个通信网络
        谷歌想用高空气球将互联网服务送到偏远地区,Facebook也想做同样的事,用的却是无人机。还有许多公司也加入到竞争之中,它们选择的是卫星互联网服务。保罗•加德纳•斯蒂芬(Paul Gardner-Stephen)的想法更简单,他要用汽车来提供网络服务。     更具体地说,斯蒂芬使用的是丰田陆地巡洋舰(Land Cruisers),这是一款经典的四轮汽车,可以在不同的地形中行驶。在澳大利亚内陆偏远地区,丰田陆地巡洋舰相当流行,斯蒂芬试图以汽车为节点,搭建一个紧急通信网络。     保罗•加德纳•斯蒂芬是澳大利亚阿德莱德大学(Flinders University in Adelaide)的高级讲师,还是
[汽车电子]
网络分析仪的噪声系数
什么是噪声系数? 噪声系数是用来描述一个系统中出现的过多的噪声量的品质因数。把噪声系数降低到最小的程度可以减小噪声对系统造成的影响。在日常生活中,我们可以看到噪声会降低电视画面的质量,也会使无线通信的话音质量变差;在诸如雷达等的军用设备中,噪声会限制系统的有效作用范围;在数字通信系统中,噪声则会增加系统的比特误码率。系统设计人员总是在尽最大努力使整个系统的信噪比(SNR)达到最优,为了达到这个目的,可以用把信号提高的办法,也可以用把噪声降低的办法。在像雷达这样的发射/接收系统中,提高信噪比的一种方法是用更大的大功率放大器来提高发射信号的功率,或使用大口径天线。降低在发射机和接收机之间信号传输路径上的损耗也可以提高SNR,但是信号在
[测试测量]
<font color='red'>网络</font>分析仪的噪声系数
4G(LTE)网络测试解决方案
LTE协议仿真 1) MAPS™ LTE S1 2) MAPS™ LTE eGTP 3) MAPS™ LTE X2AP 4) MAPS™ LTE Diameter  LTE协议分析  LTE网络监测方案  4G网络端到端的语音/数据质量测试 LTE协议仿真 1) MAPS™ LTE-S1仿真器(S1 MME接口) MAPS™ (Message Automation & Protocol Simulation消息自动&协议仿真)设计用于LTE-S1接口(除空口外的所有接口)的测试,可以模拟eNodeB (Evolved Node B)和
[测试测量]
4G(LTE)<font color='red'>网络</font>测试解决方案
中国电信今年3G网络大举扩容不升级网速
8月13日消息,尽管中国电信今年对3G网络大举投资、增加覆盖,但是,参与建设的厂商透露,今年中国电信并没有要求网络升级到更高版本的EV-DORev.B,也就是说网速不会有大幅提升,这可能是因为缺乏支持EV-DORev.B的终端。 目前,中国电信部署的3G技术是EVDOA版本技术,在数据业务上最高支持下行3.1Mbps、上行1.8Mbps。EVDORev.B版本支持9.3Mbps的下行速率。将使3G速率比现在的下行3.1Mbps快3倍。 2010年,中国电信已开始对所有设备商测试升级EV-DORev.B,并在上海,广州,成都等地进行EV-DORev.B试点。相关系统设备商均表示,从现有3G网络升级到EV-DOR
[网络通信]
科胜讯HDTV机顶盒译码器取得Dolby Digital Plus认证
卫星广播、有线与地面广播业者将能够由更好的频宽利用率获益 宽频通讯与数字化家庭半导体解决方案全球领导厂商科胜讯系统公司 (Conexant Systems Inc.) 日前宣布,该公司 CX2417X 系列高画质电视 (HDTV) 用机顶盒 (STB, Set-Top Box) 广播译码器已经取得杜比实验室 Dolby Digital Plus 音讯编码技术支持认证,这项先进的技术能够让卫星、有线与地面广播业者大幅改善频宽的使用,并利用现有的基础建设提供更多更高品质的音乐节目。 “ Dolby Digital Plus 的高压缩效率让业者能够提供具备卓越音质表现的更高清晰内容,而不需要进行昂贵的网络
[新品]
UWB技术在家庭和有线电视网络中的应用
  超宽带技术UWB(Ultra Wideband)始于20世纪60年代兴起的脉冲通信技术,利用频谱极宽的超短脉冲进行通信,又称为基带通信、无载波通信。由于其具有低功耗、高带宽、高传输速率、低复杂性、抗多径能力强、发射信号功率谱密度低、安全性高等优点,预计未来几年UWB技术将在和人们生活密切相关的数字家电和消费网络设备中得到推广,在有线电视网络及家庭网络中会得到广泛应用。 一、超宽带技术的基本原理   2002年2月,美国联邦通信委员会(FCC)修订了第15标准,定义UWB信号为相对带宽(信号带宽与中心频率之比)大于0.2,或在传输的任何时刻绝对带宽不小于500MHz的信号,其中信号带宽定义为:低于最高发射功率10dB
[家用电子]
UWB技术在家庭和有线电视<font color='red'>网络</font>中的应用
利用微控制器进行网络通信的网卡配置
利用单片机进行网络通信的关键是驱动和配置网络接口卡,而RTL8019是REALTEK公司高集成度的专用以太网接口芯片,支持PnP自动探测,并且内嵌16K SRAM,有全双工的通信接口,可以通过交换机在双绞线上同时发送和接收数据,使带宽从10兆增加到20兆,是用来进行以太网通信的理想芯片。   RTL8019AS是针对ISA总线设计的,在PC上用来实现网络的物理层协议,主要包括网卡与网络电缆的物理连接、介质访问控制(如CSMA/CD)、数据帧的拆装、帧的发送与接收、错误校验、数据信号的编/解码(如曼彻斯特码和NRZ码的转换等)、数据的串、并行转换等功能。而要实现这些功能,必须要对网络接口芯片进行正确的配置。   而大部分微控制器是8位
[单片机]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved