手持通信设备的光源驱动设计

最新更新时间:2007-03-21来源: 今日电子关键字:低压  稳压  电容  电荷 手机看文章 扫描二维码
随时随地手机看文章

通信手持设备光源的应用主要体现在键盘灯、液晶屏幕背光和特殊照明三个方面,主要的发光器件是半导体发光二极管(LED),驱动芯片设计技术有低压差(LDO)稳压器、可调节(Regulator)稳压电源、电荷泵(Charge Pump)电源和超级电容(Super Capacitor)电源等不同形式。

半导体发光二极管(LED)是具有体积小、省电、长寿命和可靠性高的特点,被广泛应用在通信手持设备中的屏幕显示和信息传递提示。目前,LED正向高亮度、全彩色化、高性能、低成本的方面发展。

在手持设备光源的三大模块中,键盘灯的应用方式相对固定,通常会使用4~10个LED,均用串联电阻的方式来限流,总体耗电相对较少。随着工作电压的不同,LED在颜色方面也经历几种变化,最早期LED发出的是黄绿色背光,芯片的驱动电压一般2.5V左右,而且黄绿色LED的GaP:N(LED的掺氮外延晶片)晶片的发光效率最高,发光带主峰在黄绿色591nm相对应的高强度。后来又出现了具有量子阱结构的高亮度InGaN产品,使LED可以发出绿色、蓝色、红色和紫色粉红等混合色,这也就是所谓“炫彩”手机所采用的光源。这类LED的驱动电压要高一些,通常在 3.8~4.1V之间,如果LED的数量相同,这些颜色灯比黄绿色灯的功耗要高一些。现在大多数的键盘灯都采用高亮度的白色LED,也有些出于成本的考虑使用较便宜的黄绿色LED。

手持设备中的屏幕背光是一个不可或缺的功能,由于屏幕本身有黑白屏幕和彩色屏幕之分,所以对光源的要求也不尽相同。用于黑白屏的LED完全可以和键盘灯拥有相同的电源驱动和颜色,但是对尺寸稍大的黑白屏幕而言,采用高亮度的LED从侧面给与光源,就会在屏幕上出现严重的光分布不均匀现象,因此人们又开发出了“电场致发光”(EL:Electro Luminescence)背光,它的原理主要是通过在透明的有机底板或线形构造物体面涂上发光材料,两极接上交流电压而产生交流电场,当达到一定的临界值,被电场激发的电子碰撞发光层,导致电子能极的跳跃、变化、复合而发射出高效率冷光的一种物理现象。在实际应用中发现,EL发光柔和、均匀、不发热、耗电省,且厚度薄、重量轻、携带方便,但是价格昂贵。

当LCD出现彩色屏幕以后,对光源主要需求是白光,这是由彩色LCD屏幕的光学结构决定的,原因是要形成最终看到的图像必须借助偏光片使白光均匀分布并定向发射以后,再通过可以形成彩色图案的液晶胶片,如果是其他颜色的光就无法让具有RGB单元的液晶胶片准确显示图形的颜色。所需要的LED数量视屏幕大小和亮度要求而定,一般是4~8个,而且为了获得比较一致和均匀的光输出效果,这些白光LED常用串联方式连接,因此就必须提供能使它们一起工作在足够亮度电流的驱动电压。

通信手持设备的特殊照明需求主要包括:多彩LED指示灯、手电筒功能和拍照闪光灯。

多彩LED指示灯是介于彩色屏幕出现以后和手机相机出现之前这段时间的过渡产品。它主要是通过控制R、G、B三个不同的LED芯片的发光时间长短,来混合产生不同的光学效果。但它用在手持设备中很失败,主要是因为如果为了达到“炫彩”的效果,一旦让多彩LED指示灯工作起来,系统就无法进入深度睡眠状态,这对系统的软硬件资源消耗也很大,加上LED的功耗较大,造成待机时间短而显得得不偿失。

手电筒和拍照闪光灯是目前有百万以上像素照相机的手机所带有的新功能,由白光LED提供强光源,而且随着手机内部存储容量(SD卡、T-Flash卡等)的不断扩大和与PC的数据共享,以及网络间数据传输MMS的流行(EGPRS/3G),用户对所拍摄照片质量的期望越来越高,要求能在光线比较暗的地方能提供闪光灯。手电筒功能事实上是拍照闪光灯的附属功能,可以与拍照闪光灯共享硬件资源。最早出现的拍照闪光灯算不上真正的闪光灯,因为在使用时需要软件预先打开灯光,没有可供同步拍照过程的编程接口;其次,它的LED大约200mA工作电流所产生的亮度很低,且仅在半米范围内起着有限的作用,也就是说手电筒功能是闪光灯连续工作在小电流模式的状况。同理,LCD背光和键盘背光均可以被纳入到一个整体的应用方案中来得到解决。

所以,只要有大功率、高亮度的光源驱动就能完全解决手持设备的光源需求。

近似认为,如果设定在两米范围内对拍照手机进行有效补光,就需要LED的工作电流达到800mA~1.5A,才能产生所需的光强。也有一些设备为了达到设计亮度,会采用两个LED并联来增加输出光强。如果想达到接近数码相机“氙气灯”相同的补光效果,就需要LED的工作电流达到4A。同时,光照效果的好坏还取决于聚光透镜效果、受光面积以及与光源的距离。

总之,为了提升用户的使用体验,高亮度的白光LED将是手持设备光源的首选发光器件,它可以用在键盘灯、液晶屏幕背光和特殊照明三个方面,可以对每种应用的光源分别提供电源,也可以由一个驱动器件的多路输出管理所有光源。

光源驱动实现方案的分析对比

按照目前市场要求,光源驱动芯片要能提供大驱动电流输出,可以提供多路输出,并且还可以输出小电流。现有的低压差(LDO)稳压器、可调节稳压电源,虽然易于系统集成,但是驱动能力太弱,已经无法满足新的要求。

典型高亮度LED的工作电压和电流的关系、LED亮度与电流的关系如图1所示,一般手持设备所用锂离子电池的有效工作电压大约是3.0~4.2V,如果直接作为LED的电源,对于单个LED(或并联),电压就有些过高且效率较低,而对多个LED串联又会出现电压不足的问题。所以,人们又提出了能够提供相对适宜的驱动电压和电流的背光驱动芯片。

(a)LED工作特性曲线

(b)LED亮度与电流的关系

图1 典型的LED工作特性和光效率


其次LED的控制方式主要有电压控制和电流控制两种,如图2所示。

(a)LED电压控制原理

(b)LED电流控制原理

图2 常用的控制方式和工作原理

所谓电压控制就是指只需驱动芯片提供额定的电压。电流控制就可以让输出电压随着负载的变化作调整,工作电流可按照设定要求稳定在某个值。这两种方式都需要反馈侦测。再分析图1(a)所示的LED的工作特性,无论是设定电压考察电流还是固定电流分析电压,实际上在同一的电流设定点要使LED产生近似相同亮度的电压浮动范围很大,因此不推荐使用电压控制,而采用电流控制显然有优势,能使得电流不依赖于驱动电压。

常见的电流控制的拓扑结构有两大类:电容式和电感式,两种结构都可以通过脉宽调制(PWM)做开关控制,开关频率为30kHz~2MHz,随着器件工艺水平的提高,开关速度还可能增加,效率也会得到相应的提升。随着LED设计工艺技术的提高,可以制造出更大功率和高亮度的器件,就需要相应的超大电容结构来满足设计性能,弥补前面两种在驱动能力上的不足。

电容式驱动拓扑结构的主要贮能元件是电容,按照负载端的要求可以产生1倍、1.5倍或者2倍于输入的输出电压,从图3到图5分别是它们的工作原理。

图3 电容式1倍压充放电过程

图4 电容式1.5倍压充放电过程

图5 电容式2倍压充放电过程


对于电容式驱动结构,根据能量守恒分析,其输入端的电流也会随着倍数关系变化,即当1倍压时输入端电流等于输出端电流,当1.5倍压时输入端电流是输出端电流的1.5倍,当2倍压时输入端电流是输出端电流的2倍。同时,这种结构的效率按照电压关系来计算,其中M是电压变化倍数。图6所示为在不同设定电流处,在这几种倍数关系时效率的变化曲线。假定输入电压为3.6V,输出电压为3.5V,如果采用2倍升压,则效率仅有50%,如果1.5倍升压则效率只有65%,而1倍升压的效率可以达到97%以上。

图6 电容式结构效率的仿真结果


电感式结构的主要贮能元件是电感,输出电压可以通过控制一个周期内的充放电的占空比,来达到线性调节,图7所示为一个能够自适应实现升压或降压的拓扑结构,它的工作原理是:(1)S1和S3闭合,升压模式,电感两端的电压等于输入电压;(2)S1和S4闭合,前向导通模式,电感两端的电压等于输入电压减去输出电压;(3)S2和S4闭合,降压模式,电感两端的电压等于反向输出电压。

(a)电感式结构

(b)电感式结构的实现电路

图7 自适应实现升压或降压的拓补结构及电路


与电容式结构相比较,电感式结构的效率是从电流角度来分析的,假定以2MHz的开关频率工作,在降压模式从2.5V到1.2V,而升压模式从2.5V到5V,每一个MOS管的内阻近似为0.17Ω,那么当选取不同的电感值时仿真得到的效率曲线分别如图8和图9所示。

图8 降压模式从2.5V到1.2V效率的仿真结果

图9 升压模式从2.5V到5V效率的仿真结果

综合升压和降压的仿真结果可以得出,在2MHz的开关频率和MOS管的设计内阻近似为0.17Ω条件工作时,贮能电感的取值范围可以小于4.7μH,由图中可以看出,在一般情况下2.2μH甚至1.5μH都是可以接受的,这就意味着不但降低了成本,而且还可以在PCB设计中节省布局空间。

超级电容模式是针对以上两种结构的局限而产生的,因为前两种结构的最大输出电流受到电池使用规格的限制。如果假定工作电流均可以达到1A,且输出电压是输入电压的2倍,根据前面给出的效率表达式,假定各自的平均效率可以达到80%,那么映射到输入端的电流就可以达到2.5A,从而会引起过放电和很大的压降,这对于锂离子电池是不允许的。所以当输入端电池需要提供的电流大于2A或者更大时,就需要对电池输出电流进行限制,相应在负载端还需要一个贮能电容,容值一般在0.2F到1F。图10就是基于这种概念给出的定义。

图10 超级大电容模式结构框图

对于这种新型结构的工作原理,首先通过电容式或电感式结构设计的限流器来对超大电容充电,当大功率耗电模块,如高亮度LED和射频功率放大器,在短时间内需要很大的驱动电流工作时,能量主要由超大电容来提供,当然这种结构的局限性在于,还是无法长时间地工作在大电流状态,图11是以电感式结构作为限流器,采用图10所示电流控制的超大电容结构充电和一次完整的放充电过程。从图中的充电过程可以看出,在限流器控制下,超大电容获得能量并且电位得到提高,使驱动能力得到保证;当需要快速放电时,限流器本身又作为驱动源和超大电容一起对负载输出能量,完成一个工作周期后超大电容再次被充电获得能量。这样最大程度地保障了电池使用的安全和系统的稳定。

(a)超级大电容初始化充电过程

(b)一个周期内的放电和充电过程

图11 超级大电容结构充放电过程仿真


通过分析对比以上几种结构,可以看出,用在通信手持设备光源的驱动芯片发展趋势将是小封装、大功率、可编程控制、良好的热效率以及合理的成本,而且还会尝试把此类电源驱动集成在系统电源管理模块中。

关键字:低压  稳压  电容  电荷 编辑: 引用地址:手持通信设备的光源驱动设计

上一篇:基于VHDL状态机设计的智能交通控制灯
下一篇:手机相机的LED闪光灯驱动电路

推荐阅读最新更新时间:2023-10-18 14:38

使用电容和红外线接近感应开发新一代人机界面
   简介   预计2010年具有先进人机界面的电子产品出货量将超过十亿。这些人机界面利用电容和红外线接近感应等技术使终端用户体验显著改善,同时增加了系统可靠性、降低了总体成本。除了使产品更易使用、更具视觉吸引力之外,这些人机界面屏蔽掉了电子产品日益增长的复杂性,使得制造商能够把具有先进功能的产品更快推向市场。   先进传感器人机界面比传统的机械式界面更可靠,因为它们没有与按键和转盘相连的活动部件,这些部件随着时间的推移更易失效。基于传感器的控制面板和显示器也变得更加灵活,允许单套控制组件根据应用程序环境重新配置,以便客户在现有功能的基础上实现自己的应用。手势识别和“非接触”技术相结合后,开发人员可以使设备界面变得更加智能
[嵌入式]
电源设计中不可或缺的电容细谈
  电源往往是我们在 电路设计 过程中最容易忽略的环节。其实,作为一款优秀的设计, 电源设计 应当是很重要的,它很大程度影响了整个系统的性能和成本。   这里,只介绍一下电路板电源设计中的电容使用情况。这往往又是电源设计中最容易被忽略的地方。很多人搞ARM,搞DSP,搞FPGA,乍一看似乎搞的很高深,但未必有能力为自己的系统提供一套廉价可靠的电源方案。这也是我们国产电子产品功能丰富而性能差的一个主要原因。    1 电容的重要参数   好了,言归正转,先跟大家介绍一下电容。首先对电容品牌有一个大概的了解,市面上的国产电容有三环电容、风华电容等品牌,台企龙头YAGEO电容(即国巨电容),以及国外进口品牌如TDK电容、SAMSUNG
[电源管理]
电源设计中不可或缺的<font color='red'>电容</font>细谈
面向直流链路应用的模块化电容器ModCap概念
TDK专为直流链路应用开发了模块化且通用的电力电容器概念。该系列电容器结合新一代的IGBT模块,有望快速为牵引、可再生能源和工业应用带来紧凑型逆变器。 市场对逆变器和所需直流链路电容器的要求日益严格,其中包括以紧凑尺寸提供高能量密度、控制快速开关操作、大电流能力、高工作温度、与IGBT模块的机械兼容性,以及长使用寿命。为满足上述的所有要求,TDK基于在ModCap™电力电容器方面长期积累的专业知识,开发了一种新的模块化、标准化和可扩展的直流母线电容器概念。该系列不同于多数传统的直流链路电容器,改用方形设计,配备塑料外壳,并且有两种型号可选:243 x 169.5 x 90 mm或258 x 215 x 115 mm(图1)。
[电源管理]
面向直流链路应用的模块化<font color='red'>电容</font>器ModCap概念
电容式触摸传感器(2):布局设计和智能手机应用实例
在本系列文章的第1部分中,我们不仅探讨了机械按键用户界面与电容式触摸传感器用户界面的差异,而且还讨论了步骤1(设备的外观与质感)以及步骤2中的原理图设计部分。第2部分,我们将介绍将机械按键替换成电容式感应按键时所需的设计布局。此外,我们还将举一个应用实例。 步骤2:布局: 对于电容式传感器设计方案而言,布局非常重要,因为传感器很容易受外部噪声影响。每个布局都必须针对特定应用创建,因此布局辅助工作通常着眼于提供建议。所以,一般很难一开始就给出理想的设计。 在设计任何电容式传感器布局时,开发人员必须考虑的重要参数包括: ● 传感器尺寸:传感器尺寸取决于覆盖层厚度。覆盖层越厚,传感器就越大。考虑到较小按键对触摸不
[电源管理]
<font color='red'>电容</font>式触摸传感器(2):布局设计和智能手机应用实例
Vishay的T16系列液钽电容器可满足航空、航天应用需求
宾夕法尼亚、MALVERN — 2013 年 5 月8 日 — 日前,Vishay Intertechnology, Inc.(NYSE 股市代号:VSH)宣布,其采用glass-to-tantalum密封条的T16系列液钽电容器现可供货,有A、B、C和D四种外形代码。对于航空和航天应用,这些加固过的器件具有更好的耐振动(正弦周期振动:50g;随机振动:27.7g)能力。 Vishay的T16电容器具有该公司SuperTan®系列器件的全部优点,+85℃下的反向电压为1.5V,热冲击为300次,以及良好的抗振动能力。这款液钽电容器适用于航天和航空设备的电源中的定时、滤波、储能和脉冲功率应用。 T16系列的电压为25V~
[电源管理]
揭露DRAM和电容炒货内幕,三星兜底策略纵容涨价
2017年内存、电容双双缺货涨价,其中内存每季度涨价超20%,电容普遍涨价4-5倍。据集微网获悉,缺货涨价固然有产能不足的因素,但原厂联合渠道商炒货,是其中更为重要的潜在影响因素。 (DRAM)内存原厂出货量由三星电子一家独大,占据了近5成的市场份额。据供应商爆料称,如果既在三星电子有渠道积累,现今又在终端品牌相关业务任职,就具备炒货契机。因为在今年DRAM缺货涨价潮中,对下游终端大客户影响其实并不算大,由于双方基于合同执行与大客户战略,即便缺货,也会优先供应大客户,同时大客户也不在涨价目标客户群之列。  该供应商进一步透露,在这种条件下,假设原本某手机大品牌实际DRAM订单是100KK,但在缺货涨价声中,终端大客户受影响不大,而
[手机便携]
开关电源转换器寻求省略滤波电容的研究
  因为负载急变引起的输出电压波动,当波动持续时间超过开关周期时,通过反馈可以在一定程度上进行调整,LC滤波电路对这种电压调整的效 果起着决定作用。为了达到电压调整的目的,必须提高开关频率,减少L和C的值,让滤波器的截止频率尽量向高域端延伸。此时,可以考虑用 两个非对称逆变器(带变压器)输出双相方波,每个逆变器的输出电压通过半波整流接在共同的负载上,将截止频率延伸到高频端。   开关频率由MOSFET的开关时间决定,为了提高开关频率超过其极限值,在使用中可以采用多相开关方式来等效提高开关频率的方法。不过,相 数也是有限制的。此外,变化的原因仅在于负载一侧,让截止频率尽量低也非常有效。为了达到这一目的,使用电气双层电容滤波器可
[电源管理]
电容式液位传感器与浮球式液位开关的区别
工作原理: 浮球式液位开关根据浮球随着液位的上升下降而浮动时,浮球内的磁铁去吸引磁簧开关的接点,产生开与关的动作,随后给出通断信号。 电容式液位传感器通过测探介质的导电率或绝缘率决定是否有液体的存在,简单可以理解为根据所检测到电容值的变化来判断有水或无水,输出高低电平信号(0和1数字信号)。 外观: 浮球式液位开关结构松散,体积大。而电容式液位传感器结构较小。 检测精度: 浮球式液位开关是接触式传感器,本身的精度就不高,且时间久后产生水垢,水垢导致浮球增重后影响液位检测精度会不准。 电容式液位传感器不接触液体,不受液体特性影响,但需贴紧容器壁不能有空隙,否则会影响灵敏度。电容式液位传感器因为内部有芯片的问题,所以通
[测试测量]
<font color='red'>电容</font>式液位传感器与浮球式液位开关的区别
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved