东芝公司的研究人员在量子计算机结构方面取得了突破性进展:双通道传感耦合器的基本设计,将提高可调谐耦合器的量子计算速度和准确性。该耦合器是决定超导量子计算机性能的一个关键装置。超导量子计算机中的可调谐耦合器负责连接两个量子比特,并通过打开和关闭它们之间的耦合来进行量子计算。
目前的技术可以关闭频率接近的超导量子比特的耦合,但这容易造成串扰、形成误差,当其中一个量子比特被电磁波照射进行控制时,就会出现串扰误差。此外,目前的技术无法完全关闭频率明显不同的量子比特的耦合,从而又导致因残余耦合而产生误差。
东芝公司最近设计了一种双传感耦合器,可以完全开启和关闭频率明显不同的量子比特之间的耦合。完全打开可以实现强耦合的高速量子计算的同时完全关闭则可以消除残余耦合,从而提高量子计算速度和精度。
用新技术进行的模拟表明,东芝实现了双量子门,即量子计算中的基本操作,其精确度可达99.99%,处理时间仅为24纳秒。
东芝的双量子耦合器可应用于固定频率的量子比特,实现了高稳定性和易设计性,并首次实现了频率明显不同的固定频率跨门类比特之间的耦合,可以完全开启和关闭,并提供了一个高速、精确的双比特门。
该技术有望推动实现更高性能的量子计算机,从而在实现碳中和和开发新药物等领域作出贡献。
该技术的细节于9月15日在美国的《物理评论应用》上发表,该杂志是美国物理学会的期刊。
关键字:量子计算机
引用地址:
东芝发明双通道传感耦合器 推动更快、更准确的超导量子计算机的到来
推荐阅读最新更新时间:2024-11-02 12:52
厉害了合肥,中国首款国产量子计算机控制系统诞生
合肥本源量子计算科技有限责任公司(简称本源量子)宣布,该公司研制的中国首款完全自主知识产权的量子计算机控制系统在合肥诞生。 中国科学院量子信息重点实验室主任郭光灿院士介绍,量子计算机是一个复杂系统,除了核心芯片外,操作控制系统是重要的核心器件之一。 中国科学技术大学的中国科学院量子信息重点实验室 目前,绝大多数量子计算机研发团队仍在使用商用仪器设备自行搭建量子计算机控制系统,由于传统的科学仪器仅负责单一的信号输出或者采集任务,产生成本昂贵、兼容性差、功能冗余、难以集成等系列问题。 针对此项技术难题,本源量子对半导及超导量子比特进行创新利用与研发,研制了一套精简、高效的量子计算机控制系统——本源量子测控一体机Or
[嵌入式]
国际量子计算研究获重大突破 量子计算机成可能
记者二十九日从中国科技大学获悉,该校微尺度科学国家实验室杜江峰教授领导的研究小组和香港中文大学刘仁保教授合作,通过电子自旋共振实验技术,在国际上首次通过固态体系实验实现最优动力学解耦,使得量子计算机的问世成为可能。
据介绍,将量子力学和计算机科学结合并实现量子计算是人类的一大梦想。量子计算的本质就是利用量子的相干性,而在现实中由于环境不可避免地会对量子系统发生耦合干扰,使量子相干性随时间衰减发生消相干,计算任务无法完成。因此为使量子计算成为现实,首要急需解决的问题就是克服消相干。
杜江峰教授介绍说,以分解五百位的自然整数为例,目前最快的计算机需要用几十亿年才能完成,而用量子计算机,同样的重复频度,一分钟就可以解
[嵌入式]
量子计算机和 CMOS 半导体的发展回顾与未来预测
随着量子计算的出现,对外围容错逻辑控制电路的需求达到了新的高度。 在传统计算中,信息的单位是“1”或“0”。在量子计算机中,信息单位是一个量子比特,可以描绘为“0”、“1”或两个值的叠加(称为“叠加态”)。 由于其高性能和低功耗,传统计算机中的控制电路都基于 CMOS(半导体)。传统计算机的“1”和“0”可以使用在室温下运行的 CMOS 芯片进行操控、存储和轻松读取。如今,大多数量子计算机都在低温下运行,以确保量子比特尽可能长时间地保持一致(处于叠加态)。 在量子计算机中,一致的时间通常非常短(纳秒到毫秒),因此需要更多能够执行高速、容错操控的控制电路。如果传统的 CMOS 控制电路可以在低温下运行,则可以满足这一要求 。
[网络通信]
量子计算机还没完全实现 硅谷已流行开量子计算聚会
网易科技讯3月17日消息,据国外媒体报道,“想参加关于量子计算的聚会吗?” 我没想到会有人问我这个问题。我的大脑有些转不过弯:因为就在之前,我刚刚结束了对谷歌量子计算科学家贾罗德·麦克林(Jarrod McClean)长达一小时的采访,现在正在在心里盘算着如何组织文章。麦克林的谈话在采访前一天引起了我的注意:他激动地说了几句话,热烈地说了一句,在幻灯片中指出相关方程和图表。他的观众有一屋子的美国物理学家。这里是美国物理学会的3月份会议,而我的主要工作是为这个世界上规模最大的物理学会议撰写通讯稿件。,我在那里为该组织的通讯撰稿。麦克林告诉我,第一个量子计算机算法将模拟复杂的分子运动,最终能够发现有用的新材料。 对于聚会的邀请,我当然
[半导体设计/制造]
德国计划明年建成首台量子计算机,试图追赶欧洲差异化
据悉,德国计划在明年建成该国首台量子计算机。 德国联邦教研部长安雅·卡利切克表示,这将是一台实验性的计算机,但在 5 到 10 年后,相关新技术可以应用在工业领域。 卡利切克指出,量子计算机可以解决以今天的计算能力需要数十年甚至数百年才能解决的问题,该技术不仅可用于化工、制药等领域,还具有重大地缘战略意义。 卡利切克说,由于建造成本太高,单一欧洲国家难以独自承担,德国希望在担任欧盟轮值主席国期间,将相关议题纳入未来欧盟的科研框架。 她说,这是一个“关系到欧洲技术主权的关键问题”,德国以及整个欧洲在量子计算领域虽然“存在需要弥补的差距”,但也有自己的优势,仍有追赶上的机会。德国政府已于今年 6 月决定投资 20 亿欧
[嵌入式]
台积电2020年量产5nm:半导体在量子计算机到来前的最后狂欢
随着智能手机的发展,台积电和三星等半导体代工厂商逐渐声名鹊起,2015年的20nm、2016年的14/16nm到2017年的10nm,半导体制程的更新速度远超想象。在2018年,台积电已经相机流片了7nm晶圆,5nm工厂也在2018年1月份开工建设。 虽然7nm工艺并没有推迟到来,不过更为先进的5nm工艺则需要等到2020才开始量产。台积电生产5nm晶圆的Fab 18工厂位于台南,总造价约170亿美元,计划年生产100万片300mm晶圆。 对于很多半导体业界来说,7nm是半导体工艺的最后一个重要制程,5nm之后的工艺稳定性和生产难度过高,加上昂贵的设计成本,会让很多IC设计厂商望而却步。而且在今年的CES大会上,英特尔正式公布了
[半导体设计/制造]