低频数字相位(频率)测量的CPLD实现

发布者:创意小巨人最新更新时间:2010-02-02 来源: 微计算机信息关键字:测频  测相  电子测量技术  CPLD  相位测量仪 手机看文章 扫描二维码
随时随地手机看文章

  在电子测量技术中,测频测相是最基本的测量之一。相位测量仪是电子领域的常用仪器,当前测频测相主要是运用等精度测频、PLL锁相环测相的方法。研究发现,等精度测频法具有在整个测频范围内保持恒定的高精度的特点,但是该原理不能用于测量相位。PLL锁相环测相可以实现等精度测相,但电路调试较复杂。因此,选择直接测相法作为低频测相仪的测试方法[1、2、3、4]。
  
  设计的低频测相仪,满足以下的技术指标:a .频率20-20KHz;b .输入阻抗≥100KΩ;c.相位测量绝对误差≤1度; d.具有频率测量和数字显示功能;e.显示相位读数为0度--359度。
  
  1系统工作原理
  

  图1 测频测相系统原理框图
  
  Figure 1 frame of measure frequency phase system
  
  系统工作原理如图1所示,系统运行时,首先由单片机通过clr控制线送清零信号,启动CPLD的计数模块,在设计的CPLD内部控制模块作用下,记录AB两相的相差间隔时间内的标频个数(测相计数器),同时也记录下A相一个周期内的标频个数(测频计数器),此后测频和测相计数器处于保持状态,同时送出right信号表明完成测频测相的计数,单片机可以读数据。
  
  单片机和CPLD的数据采用独立接口方式,这样设计比较灵活,可以不受单片机总线时序的影响。由ADD[0..2]进行控制,分别读取测频测相计数器中的19位数据,并存于单片机中,进行后续的计算。单片机完成数据的运算后,将所得数据转化为10进制,送到显示板进行显示。显示板共有8个数码管,其中,前5位用于显示频率(最大为20000Hz),后三位显示相位(最大为359度)。
  
  在CPLD设计中,根据计算,选取测频、测相计数器长度均为19位,在标频信号为10MHz时,相位测量精度小于1度。若只用89C51,其自带的计数器只有16位,且不易同时实现测频测相的功能。故选用CPLD实现其测频测相的计数功能,并设计了独立的数据接口,以便与单片机交换数据[5、6]。
  
  2 CPLD测频测相模块工作原理
  

  图2  CPLD测频测相内部原理框图
  
  如图2所示,利用VHDL语言设计了完成测频测相计数功能的数字芯片。整个芯片由测频计数器、测相计数器、控制部分、数据选择器和测试用分频器5个部分组成。
  
  控制部分主要是利用状态机原理,设计了检测一个测频周期的控制电路。在clr信号为高时,启动测频测相计数器,此时,状态机处于计数工作状态;当A相第一个上升沿到来时,测频测相计数器同时启动,开始计数;当B相第一个上升沿到来时,控制部分控制测相计数器停止计数;当A相第二个上升沿到来时,控制部分控制测频计数器停止计数,同时送出计数完成信号right;此后测频测相计数器处于保持状态。单片机读数时,通过设置add[0..2]数据选择器的地址选通端,依次送出测频计数器中的19位数据,8位一组,从xcout[0..7]端口送出,单片机需分3次读完测频计数器中的19位数据,数据选通端设置为001,010,011;同理,单片机也需分3次读完测相计数器中的19位数据,数据选通端设置为100,101,110。
  
  为了测试方便,设计了测试用分频器,该分频器系数可以在VHDL源程序中改动,如为1000,则将测试时用的标频信号10M进行1000分频,分频后频率为10KHz,正好处于20-20KHz范围内。[page]
  
  3 单片机程序
  

  如图3所示,系统上电后,首先由单片机送出清零信号,启动CPLD中的测频测相计数器,CPLD进行测频测相的计数,单片机查询到right=1,则表明计数器完成计数工作,开始读取CPLD中的数据。否则,就等待。单片机通过控制CPLD中数据选择器的地址选通端add[0..7],分别读取测频、测相计数器的19位数据,并进行相应的计算。计算中首先调用频率计算子程序,计算出相应的频率,然后再调用相位计算子程序,计算出相应的相位,再调用进制转换程序,将16进制的数转换成10进制,最后调用显示子程需,在8位数码管中显示出测量的频率、相位值。由于篇幅关系,此处不再详述具体程序和显示部分的设计。
  
  4 结束语
  
  由单片机晶振产生的6M信号,经过一个与非门整形为矩形脉冲,再经过CPLD7128的内部设计的分频器分频(分频系数为1000、2000、3000、4000),由该系统进行测频测相。AB二相的信号加上一个反相器,则从理论上讲,相位相差180度。实际测量结果为,频率分别是6000、3000、2000、1500Hz,相位为180度,与理论完全符合。利用DDS数字移相信号发生器产生不同频率和相位差的信号实测证实,该系统指标符合设计要求。
  
  随着EDA(电子设计自动化)技术和微电子技术的进步,CPLD的时钟延迟可达到 级,结合其并行工作方式,在超高速、实时测控方面有非常广阔的应用前景;并且CPLD&FPGA具有高集成度、高可靠性,几乎可将整个设计系统下载于同一芯片中,实现所谓片上系统(SOPC),从而大大缩小其体积,具有可编程型和实现方案容易改动的特点,有利于产品的研制和后期升级[7]。
  
  CPLD7128大约有128个触发器,程序中AB两相计数器共用了19+19=38个,控制部分用了4个,还剩下了大约128-42=86个(其他模块还有少量的占用)。 CPLD7128的计数频率最高可175.4MHz,若提高标频信号的频率为175 MHz,同时增加计数器的长度,则测相精度从理论上讲可以达到0.04度。
  
  采用CPLD配合单片机的设计方案,具有造价较低、速度高、精度高的优点,并且可以通过软件下载而达到仪器硬件升级的目的。

关键字:测频  测相  电子测量技术  CPLD  相位测量仪 引用地址:低频数字相位(频率)测量的CPLD实现

上一篇:利用高带宽混合信号示波器进行DDR验证和调试
下一篇:PXB基带发生器和通道仿真器性能增强

推荐阅读最新更新时间:2024-03-30 22:10

基于单片机的多周期完全同步测频技术
  频率测量是电子测量中经常遇到的问题,如何提高频率测量的准确度是关键。通常采用的方法有低频端测周高频端测频和多周期同步测量频率。采用低频端测周高频端测频时存在中界频率测量误差很大即测量死区问题,也就是说不论低端和高端测量准确度有多高,中界频率测量误差总是最大。因此从理论上讲频率的测量准确度很难提高到某个数量级;多周期同步测频法则不存在这样的问题,只要周期数足够大,测量的准确度总可以提高到一定程度。但多周期同步测量实际上只是对被测信号进行同步,对时钟信号并未同步,因此它只是一种准同步。本文根据多周期同步测频原理及测量误差,提出完全同步频率测量的新方法,最后使用单片机实现这种测量,使测量频率的准确度大大提高。 1 多周期同步测频原
[测试测量]
基于单片机的多周期完全同步<font color='red'>测频</font><font color='red'>技术</font>
基于ARM和CPLD的温度控制器的设计
1 引言 随着计算机技术的飞速发展,在日常生活和生产中,人们要求更精确测量和控制温度等模拟物理量,不仅满足工业现场实时监控,上位PC机遥观、遥测和遥控等,而且要求连-接互联网,以实现远程监控和访问数字化、智能化的传感器功能。 这里提出一种以ARM微控制器为核心,结合CPLD技术的温度控制系统。该系统将温度传感器采集的信息A/D转换后传输至微处理器处理,其处理数据再经网络接121远程传输。或通过RS232串行接口与上位机PC机通信实现分布式温度监控系统。 2 系统硬件设计 该系统设计主要是针对工业控制领域现场仪器仪表开发的,其硬件设计框图如图1所示,该框图包括ARM微处理器、电源、监控复位、存储器扩展(RAM、Flas
[单片机]
基于ARM和<font color='red'>CPLD</font>的温度控制器的设计
基于PCI总线模块的多通道串行数据采集系统设计
   O 引言   目前市面上有多种数据采集卡,但其应用都具有一定的局限性,不可能完全满足用户的需求。本文介绍的数据采集卡可应用于某视频图像采集系统中,数据源发送多路同步串行数据,然后经过数据采集卡传入上位机用以进行后续分析。上位机向外写控制字并转换后以异步串行方式输出。用以控制视频图像的采集。本系统将PCI接口逻辑和其他用户逻辑集成于一片FPGA中,因而大大节省了资源,便于进行串口扩展及其他功能的添加,性能良好,用途广泛。    1 PCI总线   PCI总线是一种高性能的局部总线,具有32位可升级到64位的、独立于CPU的总线结构。工作频率为33/66 MHz,最高传送速度可达132 MB/s(32位、33 MHz)或5
[模拟电子]
基于STD总线的多路数字I/O设计
在工业控制领域,数字I/O以其简单、灵活的特性,得到了广泛的应用。以往对于数字I/O的应用和数量增加的方法通常用GAL和专用I/O芯片采用译码扩展等方式来实现,这种方式尽管能够满足一定程度上的要求,但对于更大数量的I/O应用,比如几十甚至上百路的数字I/O,就勉为其难了。为了满足这种要求,并且进一步提高数字I/O的使用效率,专门针对多路数字I/O进行了基于STD总线的设计,应用Xilinx公司的CPLD进行编程开发,实现了64位数字输入DIN 0~DIN 31和64位数字输出DOUT O~DOUT 31,同时每一路I/O可以独立编程,既可以作为输入又可以作为输出。 1 STD总线 目前,STD标准总线已成为工业控制领域内最
[工业控制]
用DSP实现CPLD多方案现场可编程配置
在继电保护测试装置中, 既有复杂的算法, 又涉及多种检测与控制方案。用DSP实现算法和多方案的配置,用CPLD进行实时检测和控制,是一种较好的独立运行模式。一般CPLD的配置依靠专用配置PROM或下载电缆来完成。本文介绍基于DSP的CPLD多方案现场可编程配置方法。 1 总体描述 系统中的DSP采用TI公司的定点数字信号处理器TMS320C5402。它采用4总线4级流水线的增强型哈佛结构,处理速度为100MIPS;具有片内4K%26;#215;16位的ROM和16K%26;#215;16位的DARAM, 2个多通道缓冲串行口(McBSP),1个直接存储控制器(DMA)等片内外围电路;外部可扩展至1M%26;#215;16位存储
[嵌入式]
基于DSP+CPLD的伺服控制卡的设计
0 引 言 随着先进制造技术的迅速发展,对运动控制的精度要求也越来越高,而运动伺服控制系统的性能很大程度上取决于伺服控制算法,通过运动控制与智能控制的融合,从改进传统的PID控制,到现代的最优控制、自适应控制、智能控制技术,应用先进的智能控制策略达到高质量的运动控制效果,已经成为当前研究的一个热点。 由于运动伺服控制系统中存在负载模型参数的变化,机械摩擦、电机饱和等非线性因素,造成受控对象的非线性和模型不确定性,使得需要依靠精确的数学模型,系统模型参数的常规PID控制很难获得超高精度、快响应的运动轨迹的要求。因此伺服控制系统越来越多采用PID与其他新型控制算法相结合的控制方式,如人工智能与专家系统、模糊控制、人工神经网络、
[工业控制]
基于DSP+<font color='red'>CPLD</font>的伺服控制卡的设计
利用单片机测频率信号的参数分析
   1.引言     无论何种类型的信号,连续的或离散的,有规律的或无规律的,对计算机控制系统而言,首先得通过前向通道的调理,使信号能够被机器所检测:高低电平的范围,时序的配合、是否需要锁存、是否需要分频等等。     测速、测V/I、测相位等一般都要用到频率信号,特别是在工业控制中。很多变送器如电压、电量变速器,功率、行程变速器等都有频率信号或者说脉冲信号的输出。 频率信号抗干扰性能好,适于远距离传送,并且频率信号所需的接口简单,占用资源少,一般它只占用一路计数器接口直接进行计数或一个中断源输入接口,在中断服务程序中对脉冲进行计数,当然也可利用外部计数装置输入若干路通用I/O接口中。     总之频率信号的测量具有
[单片机]
利用单片机<font color='red'>测频</font>率信号的参数分析
基于CPLD的声发射信号传输系统设计
0 引言 声发射技术是光纤传感技术和声发射技术相结合的产物,是目前声发射技术的发展趋势。它将高灵敏度声发射传感器安装于受力构件表面以形成一定数目的传感器阵列,实时接收和采集来自于材料缺陷的声发射信号,进而通过对这些声发射信号的识别、判断和分析来对材料损伤缺陷进行检测研究并对构件强度、损伤、寿命等进行分析和研究。 在实际的构件检测中,现场声源信号通常是在100~800 kHz之间的微弱高频信号,而且材料损伤检测、声发射源定位往往需要多个传感器形成传感器阵列,而声发射信号的数据传输系统必须达到640 Mbps以上的数据传输能力;并应具有应付突发或长时间数据接收和存储能力。本文就是利用CPLD来实现对声发射信号的采集,从而有效解决了
[应用]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved