主要存在的问题 主要有:①指示长期不准;②始终无指示;③指示大范围波动,无法读数;④指示不回零;⑤小流量时无指示;⑧大流量时指示还可以,小流量时指示不准;⑦流量变化时指示变化跟不上;⑧仪表K系数无法确定,多处资料均不一致。
分析及解决方法
总结引起这些问题的主要原因,主要涉及到以下方面:
1、选型方面的问题。有些涡街传感器在口径选型上或者在设计选型之后由于工艺条件变动,使得选择大了―个规格,实际选型应选择尽可能小的口径,以提高测量精度,这方面的原因主要同问题①、③、⑥有关。比如,一条涡街管线设计上供几个设备使用,由于工艺部分设备有时候不使用,造成目前实际使用流量减小,实际使用造成原设计选型口径过大,相当于提高了可测的流量下限,工艺管道小流量时指示无法保证,流量大时还可以使用,因为如果要重新改造有时候难度太大.工艺条件的变动只是临时的。可结合参数的重新整定以提高指示准确度。
2、安装方面的问题。主要是传感器前面的直管段长度不够,影响测量精度,这方面的原因主要同问题①有关。比如:传感器前面直管段明显不足,由于FIC203不用于计量,仅仅用于控制,故目前的精度可以使用相当于降级使用。
3、参数整定方向的原因。由于参数错误,导致仪表指示有误.参数错误使得二次仪表满度频率计算错误,这方面的原因主要同问题①、③有关。满度频率相差不多的使得指示长期不准,实际满度频率大干计算的满度频率的使得指示大范围波动,无法读数,而资料上参数的不一致性又影响了参数的最终确定,最终通过重新标定结合相互比较确定了参数,解决了这一问题。
4、二次仪表故障。这部分故障较多,包括:一次仪表电路板有断线之处,量程设定有个别位显示坏,K系数设定有个别位显示坏,使得无法确定量程设定以及K系数设定,这部分原因主要向问题①、②有关。通过修复相应的故障,问题得以解决。
5、四路线路连接问题。部分回路表面上看线路连接很好,仔细检查,有的接头实际已松动造成回路中断,有的接头虽连接很紧但由于副线问题紧固螺钉却紧固在了线皮上,也使得回路中断,这部分原因主要同问题②有关。
6、二次仪表与后续仪表的连接问题。由于后续仪表的问题或者由于后续仪表的检修,使得二次仪表的mA输出回路中断,对于这类型的二次仪表来说,这部分原因主要同问题②有关。尤其是对于后续的记录仪,在记录仪长期损坏无法修复的情况下,一定要注意短接二次仪表的输出。
7、由于二次仪表平轴电缆故障造成回路始终无指示。由于长期运行,再加上受到灰尘的影响,造成平轴电缆故障,通过清洗或者更换平轴电线,问题得以解决。
8、对于问题⑦主要是由于二次仪表显示表头线圈固定螺丝松,造成表头下沉,指针与表壳摩擦大,动作不灵,通过调整表头并重新固定,问题相应解决。
9、使用环境问题。尤其是安装在地井中的传感器部分,由于环境湿度大,造成线路板受潮,这部分原因主要同问题②、②有关。通过相应的技改措施,对部分环境湿度大的传感器重新作了把探头部分与转换部分分离处理,改用了分离型传感器,故善了工作环境,日前这部分仪表运行良好。
10、由于现场调校不好,或者由于调校之后的实际情况的再变动。由于现场振动噪声平衡调整以及灵敏度调整不好.或者由于调整之后运行一段时间之后现场情况的再变动,造成指示问题、这部分原因主要同问题④、⑤有关。使用示波器,加上结合工艺运行情况,重新调整。
涡街流量计[3]安装对直管段的要求:
正确地选择安装点和正确安装流量计都是非常重要的环节,若安装环节失误轻者影响测量精度,重者会影响流量计的使用寿命,甚至会损坏流量计。
涡街流量计安装对直管段的要求是非常重要的。它的详细要求如下:
流量计对安装点上的上下游直管段一定的要求,否则会影响测量精度。
若流量计安装点上的上游有渐缩管,流量计上游应有不小于15D(D为管道直径)的等径直管段,下游应有不小于5D的等径直管段。
若流量计安装点上的上游有渐扩管,流量计上游应有不小于18D(D为管道直径)的等径直管段,下游应有不小于5D的等径直管段
若流量计安装点上游有90°弯头或下行接头,流量计上游应有不小于20D的等径直管段,下游应有不小于5D的等径直管段。
若流量计安装点上游在同一平面上有90°弯头,流量计上游应有不小于25D的等径直管段,下游应有不小于5D的等径直管段。
流量调节阀或压力调节阀尽量安装在流量计下游5D以远处,若必须安装在流量计的上游,流量计上游应有不小于25D的等径直管段,下游应有不小于5D的等径直管段。
流量计上游若有活塞式或柱塞式泵,活塞式或罗茨式风机、压缩机,流量计上游应有不小于25D的等径直管段,下游应有不小于5D的等径直管段。
特别注意:涡街流量计安装点的上游较近处若装有阀门,不断地开关阀门,对流量计的 使用寿命影响极大,非常容易对流量计造成永久性损坏。流量计尽量避免在架空的非常长的管道上安装,这样时间一长后,由于流量计的下垂非常容易造成流量计于法兰的密封泄露,若不得已安装时,必须在流量计的上下游2D处分别设置管道紧固装置。(end)
关键字:涡街流量计 涡街传感器 参数整定
引用地址:涡街流量计主要存在问题及其解决方法
分析及解决方法
总结引起这些问题的主要原因,主要涉及到以下方面:
1、选型方面的问题。有些涡街传感器在口径选型上或者在设计选型之后由于工艺条件变动,使得选择大了―个规格,实际选型应选择尽可能小的口径,以提高测量精度,这方面的原因主要同问题①、③、⑥有关。比如,一条涡街管线设计上供几个设备使用,由于工艺部分设备有时候不使用,造成目前实际使用流量减小,实际使用造成原设计选型口径过大,相当于提高了可测的流量下限,工艺管道小流量时指示无法保证,流量大时还可以使用,因为如果要重新改造有时候难度太大.工艺条件的变动只是临时的。可结合参数的重新整定以提高指示准确度。
2、安装方面的问题。主要是传感器前面的直管段长度不够,影响测量精度,这方面的原因主要同问题①有关。比如:传感器前面直管段明显不足,由于FIC203不用于计量,仅仅用于控制,故目前的精度可以使用相当于降级使用。
3、参数整定方向的原因。由于参数错误,导致仪表指示有误.参数错误使得二次仪表满度频率计算错误,这方面的原因主要同问题①、③有关。满度频率相差不多的使得指示长期不准,实际满度频率大干计算的满度频率的使得指示大范围波动,无法读数,而资料上参数的不一致性又影响了参数的最终确定,最终通过重新标定结合相互比较确定了参数,解决了这一问题。
4、二次仪表故障。这部分故障较多,包括:一次仪表电路板有断线之处,量程设定有个别位显示坏,K系数设定有个别位显示坏,使得无法确定量程设定以及K系数设定,这部分原因主要向问题①、②有关。通过修复相应的故障,问题得以解决。
5、四路线路连接问题。部分回路表面上看线路连接很好,仔细检查,有的接头实际已松动造成回路中断,有的接头虽连接很紧但由于副线问题紧固螺钉却紧固在了线皮上,也使得回路中断,这部分原因主要同问题②有关。
6、二次仪表与后续仪表的连接问题。由于后续仪表的问题或者由于后续仪表的检修,使得二次仪表的mA输出回路中断,对于这类型的二次仪表来说,这部分原因主要同问题②有关。尤其是对于后续的记录仪,在记录仪长期损坏无法修复的情况下,一定要注意短接二次仪表的输出。
7、由于二次仪表平轴电缆故障造成回路始终无指示。由于长期运行,再加上受到灰尘的影响,造成平轴电缆故障,通过清洗或者更换平轴电线,问题得以解决。
8、对于问题⑦主要是由于二次仪表显示表头线圈固定螺丝松,造成表头下沉,指针与表壳摩擦大,动作不灵,通过调整表头并重新固定,问题相应解决。
9、使用环境问题。尤其是安装在地井中的传感器部分,由于环境湿度大,造成线路板受潮,这部分原因主要同问题②、②有关。通过相应的技改措施,对部分环境湿度大的传感器重新作了把探头部分与转换部分分离处理,改用了分离型传感器,故善了工作环境,日前这部分仪表运行良好。
10、由于现场调校不好,或者由于调校之后的实际情况的再变动。由于现场振动噪声平衡调整以及灵敏度调整不好.或者由于调整之后运行一段时间之后现场情况的再变动,造成指示问题、这部分原因主要同问题④、⑤有关。使用示波器,加上结合工艺运行情况,重新调整。
涡街流量计[3]安装对直管段的要求:
正确地选择安装点和正确安装流量计都是非常重要的环节,若安装环节失误轻者影响测量精度,重者会影响流量计的使用寿命,甚至会损坏流量计。
涡街流量计安装对直管段的要求是非常重要的。它的详细要求如下:
流量计对安装点上的上下游直管段一定的要求,否则会影响测量精度。
若流量计安装点上的上游有渐缩管,流量计上游应有不小于15D(D为管道直径)的等径直管段,下游应有不小于5D的等径直管段。
若流量计安装点上的上游有渐扩管,流量计上游应有不小于18D(D为管道直径)的等径直管段,下游应有不小于5D的等径直管段
若流量计安装点上游有90°弯头或下行接头,流量计上游应有不小于20D的等径直管段,下游应有不小于5D的等径直管段。
若流量计安装点上游在同一平面上有90°弯头,流量计上游应有不小于25D的等径直管段,下游应有不小于5D的等径直管段。
流量调节阀或压力调节阀尽量安装在流量计下游5D以远处,若必须安装在流量计的上游,流量计上游应有不小于25D的等径直管段,下游应有不小于5D的等径直管段。
流量计上游若有活塞式或柱塞式泵,活塞式或罗茨式风机、压缩机,流量计上游应有不小于25D的等径直管段,下游应有不小于5D的等径直管段。
特别注意:涡街流量计安装点的上游较近处若装有阀门,不断地开关阀门,对流量计的 使用寿命影响极大,非常容易对流量计造成永久性损坏。流量计尽量避免在架空的非常长的管道上安装,这样时间一长后,由于流量计的下垂非常容易造成流量计于法兰的密封泄露,若不得已安装时,必须在流量计的上下游2D处分别设置管道紧固装置。(end)
上一篇:浅谈金属检测机开发技术
下一篇:基于单芯片方案的电子秤系统设计
推荐阅读最新更新时间:2024-03-30 22:35
基于MSP430单片机的便携式PID参数整定仪的实现
摘要:PID控制器是工业中应用最为广泛的控制器,实际工程中PID参数整定问题一直是困扰技术人员的问题之一,也一直是人们研究的热点。本文应用RGA失调因子法对基于MSP430单片机的便携式PID参数整定仪进行整定。并对便携式PID参数整定仪进行了功能分析,以MSP430 F169为核心控制单元完成了系统的软硬件设计。 关键词:PID控制;参数整定;MSP430单片机 0 引言 PID控制是最常的控制策略,在工业过程控制中90%以上的控制回路具有PID结构。PID控制之所以被广泛应用主要是因为它算法简单,在实际中容易被理解和实现,而且许多高级控制都以PID控制为基础。但是由于环境的变化,使被控对象具有时变性,参数经过一段时间以
[工业控制]
涡街流量计测蒸汽的寿命
涡街流量计测蒸汽的寿命 据了解的实际应用情况,国产用个五六年没问题,不过准确度会出问题(可以调节灵敏度),使用环境影响也很大。 在蒸汽涡街流量计一众特点中,使用寿命长这个特点,还真是吸引了不少人的关注。目前看来,蒸汽涡街流量计这个特点还真不是空穴来风,对比了不少仪表之后,发现蒸汽涡街流量计还真是使用年限比较长,令人欣喜。 蒸汽涡街流量计的工作特点: 1.被测介质温度范围宽; 2.常温流体工况下该蒸汽流量传感器不断流可在线维修。 3.结构简单牢固,无运动磨损部件,使用寿命长; 4.涡街式蒸汽流量计测量精度高,阻力损失小; 5.安装方便,维修量小; 6.蒸汽流量计可远距离传输流量信号,实
[测试测量]
涡街流量计的二次仪表设计
摘要:流量测量在经济建设和社会生活的各个方面得到广泛的应用。涡街流量计通常由流量传感器(又称一次仪表)和流量显示器(又称二次仪表)组成,介绍一种流量计的设计思路,给出硬件组成和软件框图。
关键词.涡街流量计;单片机;累积流量;瞬时流量
1 引言
随着现代工业自动化水平的不断提高,在很多情况下需要集中监测多个流量点,如在石油注水开采过程中,为了保持开采效果、保护地下环境及随后分析注水数据,需要对注水量进行监测,在油田系统中逐渐使用智能仪表来计量油井的出油量。计量仪表精确度的高低直接影响企业的经济效益。目前,我国的流量计起步晚,起点低,还比较落后。使用单片机开发的流量计作为二次仪表是非常适用的,对油田自动化有很大的促进。
2
[应用]
蒸汽涡街流量计选型及安装
蒸汽涡街流量计选型 蒸汽涡街流量计是目前行业应用中使用比较广泛的流量仪表之一,主要用于工业管道中对蒸汽介质流体的流量测量。蒸汽涡街流量计有很多特点像压力损失小、测量精准度高、量程单位大,最重要是在测量工况体积流量时几乎不会受到流体的压力、密度、粘度等参数的影响,无可动机械零件。所以说它的可靠性高、维护量也非常小。 说到蒸汽它是种比较特殊的介质,通常情况下所说的蒸汽多数是指过热蒸汽。过热蒸汽是常见的动力能源,常用来带动汽轮机旋转,从而带动发电机或者离心式压缩机来进行工作。过热蒸汽是由饱和蒸汽加热升温来获取的,其中绝不含液滴或是液雾,属于实际气体。过热蒸汽的温度与压力参数是两个独立参数,其密度应由这两个参数决定。
[测试测量]
如何区分旋进式旋涡流量计与涡街旋涡流量计
旋进式旋涡流量计与涡街旋涡流量计两种流量计虽然都是利用流体振荡原理的流量计,但计分别使用了两种完全不同的工作原理。 利用卡曼漩涡原理的流量计:流体在经过一个柱状物体时,会在这个物体背向流体的两侧产生漩涡,当一侧漩涡发育时会压抑另一侧的漩涡,当一侧漩涡发育到一定程度时会脱离柱状物体随流体而去并在原位产生新的漩涡,同时另一侧的漩涡因失去压抑而发育,并压抑新生的漩涡,上述过程在柱状物两侧交替发生,发生的频率与流体的流速相关,检测这个频率可得到流速,并进而获得流量值。由于交替释放的漩涡在后面的流体中象马路两侧的物体一般排列,所以这种现象也被称作涡街。 根据这个原理工作的流量计称为涡街流量计或卡曼漩涡流量计。 利用旋进型漩涡原理
[测试测量]
涡街流量计运用问题的处理办法
涡街流量计主要用于工业管道介质流体的流量丈量,如气体、液体、蒸气等多种介质。其特性是压力损失小,量程范围大,精度高,在丈量工况体积流量时简直不受流体密度、压力、温度、粘度等参数的影响。无可动机械零件,因而牢靠性高,维护量小。仪表参数能长期稳定。本仪表采用压电应力式传感器,牢靠性高,可在-20℃~+250℃的工作温度范围内工作。有模仿规范信号,也有数字脉冲信号输出,容易与计算机等数字系统配套运用,是一种比拟先进、理想的流量仪表。 主要存在的问题 主要有:①指示长期不准;②一直无指示;③指示大范围动摇,无法读数;④指示不回零;⑤小流量时无指示;⑧大流量时指示还能够,小流量时指示不准;⑦流质变化时指示变化跟不上;⑧仪表K系数无法肯定,
[测试测量]
基于LabVIEW与MATLAB的模糊参数自整定PID控制
1 引言 传统的PID控制器结构简单,稳定性好,可靠性高,制造技术成熟,已广泛应用于工业生产过程的控制中。但它主要适用于控制具有确切模型的线性过程,而对于具有非线性、大滞后和时变不确定的系统,则无法达到理想的控制效果。人工智能的兴起和快速发展为控制领域提供了全新的方法。模糊控制是人工智能控制的一个重要分支,它是运用模糊数学的基本理论和方法,把规则的条件、操作用模糊集表示,并把这些模糊控制规则及有关信息作为知识存入计算机知识库中,然后计算机根据控制系统的实际响应情况,运用模糊推理决定系统控制量的大小。将模糊理论与PID控制策略相结合,可实现对PID参数在线自适应调整,使系统既具有模糊控制的灵活、适应性强的优点,又具有PID控制
[工业控制]
小广播
热门活动
换一批
更多
最新测试测量文章
更多精选电路图
更多热门文章
更多每日新闻
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况
更多往期活动
- MPS商城小程序上线 注册、分享、下载干货都可赢好礼——下单还返现!
- 直播已结束【用于光伏逆变器/储能系统的欧姆龙继电器 /开关/连接器解决方案】
- 希望一月 爱上EEWORLD——论坛推广月
- 学AM335X课程,赢超值BB-Black团购资格,更有DIY大奖赛预热中!
- [年末调查]工程师年末大盘点,你被点名了!
- Microchip最新SAM 以及 PIC32单片机软件开发平台-- MPLAB® Harmony V3介绍 ”
- 有奖看视频|2022台北国际电脑展——美光主题演讲精选
- ADI 生命体征监测技术:对人体实施状态监控,答题有好礼
- 《射频技术 For Dummies系列》书籍读后感征集
- 安世半导体&世平集团 高效能&小型化, Nexperia MOSFET的5G解决方案 观看、下载 闯关赢好礼!
11月16日历史上的今天
厂商技术中心