垂直度盘安装过程中的误差分析及其校正

发布者:皮球最新更新时间:2013-04-06 来源: 21IC 关键字:垂直度盘  误差分析  校正 手机看文章 扫描二维码
随时随地手机看文章
垂直度盘由主光栅、指示光栅、指示光栅座、轴和轴套组成,在垂直度盘安装过程中会产生竖盘指标差和水平轴倾斜误差。

竖盘指标差是由于固定指示光栅安装不正确引起的,是指当视准轴水平时,垂直度盘读数不为90度。安装好垂直度盘后,将仪器放在仪器墩上,照准与仪器大致同高的平行光管无穷远处的目标,用盘左、盘右观测目标的天顶距。则

盘左:α=90°-L+I;盘右:α=R-270°-I
得I=1/2(L+R-360°)

若指标差I超过规定的限差,则进行校正,校正分为两种:一种是机械校正,一种是通过软件校正。机械校正,松开指示光栅座与支架连接的4个螺钉,旋转调整指示光栅座,再次进行盘左盘右测量计算指标差,直到满足需要为止。

软件校正:启动仪器的指标差校正程序,按显示屏提示,盘左、盘右照准平行光管,提取指标差差值并存储,经上述校正后,仪器显示的角度为校正指标差后的值,即指标处于正确安装位置时的值。

水平轴倾斜误差是由于支撑水平轴二支架的高度不等高造成的,当水平轴倾斜时会对水平角的测量有很大影响、在竖轴铅直,视准轴也水平轴垂直的前提下:

1.以水平轴中心O为圆心,任意长为半径作球,HH1代表水平轴水平位置,H′H1′代表水平轴倾斜之角时的位置,竖直角度在H1一侧,水平轴绕竖轴旋转时,在各个方位上的倾斜角β是不变的。

2.当水平轴水平时,照准目标T,则垂直照准面是OZTM′,它在水平度盘上读数为M′,如果水平轴倾斜β角,当视准轴指向天顶时,视准轴就不会在正确的OZ位置,而移至OZ′位置,用这样的视准轴去照准目标T时,照准面为倾斜面OZ′TM,在水平度盘的读数为M。

弦长MM′=△β就是水平轴倾斜误差对方向读数的影响。作OZM垂直面,在球面三角形ZTM中,ZT=Z,LZMT=β,TM≈α,LTZM=△β,则由球面垂直角公式:Sin△β=Sinβ/Sinz*Sinα

又因为β和△β为小角度,可得△β=βtgα,这就是水平轴倾斜误差对水平角影响的关系式。对水平轴的倾斜误差的检定采用平、低(高)点法来检定:在室 内选定两个点,一个高于水平视线,一个低于水平视线,且垂直角满足α高=-α低,

当观测高点时:(L-R)高=2L/COSα高+2β*tgα高
当观测低点时:(L-R)低=2L/COSα低+2β*tgα低
因α高=∣α低∣;则β=1/2(C高-C低)COtα
当采用平、高读时,只要将(L-R)平=2C与(L-R)低=2L/ COSα低+2β*tgα低

具体操作根据软件提示,盘耷拉、盘右分别照准水平平行光管,求解视准轴误差和指示差β1,再盘左、盘右照准点平行光管,求解视准轴误差和指标差β2,这时可根据上述公式求得水平轴倾斜误差。

当水平轴倾斜误差过大时,可通过调整垂直度盘上的指示光栅座同支架的相对位置来校正,也可根据软件进行补偿。(end)
关键字:垂直度盘  误差分析  校正 引用地址:垂直度盘安装过程中的误差分析及其校正

上一篇:硫化橡胶人工气候老化(荧光紫外灯)试验方法
下一篇:浅谈新三角高程测量法

推荐阅读最新更新时间:2024-03-30 22:35

基于神经网络的热电偶非线性校正
1 引言   热电偶因其结构简单、易于制造和测温范围宽等优点而被广泛用于温度测量领域,但是热电偶非线性校正问题(也称线性化处理),严重影响了温度测量精度。国际、国内计算标准都给出了热电势 -温度 关系表,即热电偶分度表。其换算关系可以采用查表法,但这种方法在应用过程中显得很不方便,一种较好的办法可以利用神经网络技术建立起相应的数学模型,改善了热电偶的线性度。而神经网络具有强大的记忆容量、高速并行计算能力和非线性变换特性,能够随时进行再学习,可用来有效地校正系统的非线性。 2 热电偶非线性   热电偶的类型、规格、结构品种繁多,几乎都存在严重的非线性问题,其输出信号与测量温度之间呈非线性关系。从而给测量结果带来误差。本文采用神
[测试测量]
基于神经网络的热电偶非线性<font color='red'>校正</font>
基于PIC单片机的电能表时钟误差分析仪的研究
1引 言 随着社会的发展,用电量增大,为提高用电效率,改善用电量不均衡的现象,国内各省市的电力部门己开始全面推出了复费率电能表,计量单位对复费率电能表检定的任务越来越繁重[1-2]。时钟的准确性是分时计量最重要的一部分。目前的计量单位对复费率电能表时钟检定的方法已经逐渐不能满足需要。为了解决目前复费率电能表时钟检定存在的问题,本文设计了一种基于PIC单片机的复费率电能表时钟误差分析仪的系统。该系统是一种便携式时钟误差检定装置,集计时检定,数据处理,数据传送等功能于一体,具有快捷、准确、有效的特点。 l频率测量原理 系统测量频率采用的是多周期同步测量方法,这种方法是在直接测频的基础上发展测量方法,在目前的测频系统中得到越来越广泛的
[单片机]
基于PIC单片机的电能表时钟<font color='red'>误差</font><font color='red'>分析</font>仪的研究
如何选择功率因数校正(PFC)拓扑?
引言 随着减小谐波标准的广泛应用,更多的电源设计结合了功率因数校正 (PFC) 功能。设计人员面对着实现适当的PFC段,并同时满足其它高效能标准的要求及客户预期成本的艰巨任务。许多新型PFC拓扑和元件选择的涌现,有助设计人员优化其特定应用要求的设计。 由于有源PFC设计可以让设计人员以最少的精力满足高效能规范的要求,因此在近年来取得了好的发展。通过简化主功率转换段的设计和减少元件数目,包括用于通用操作的波段转换开关和若干占用电容,此设计也附带了一些优势。 拓扑选择 由于输入端存在电感,升压转换器是提供达至高功率因数的方法。此电感使输入电流整形与线路电压同相。但是,可以采用不同的方案来控制电感电流的瞬时值,以获得功率因数校正
[电源管理]
如何选择功率因数<font color='red'>校正</font>(PFC)拓扑?
一种有源功率因数校正电路及控制方法的设计
 有源功率因数校正技术的研究主要集中在电路拓扑、控制策略和建模分析等方面。其中电路拓扑的研究除了电力电子技术中的基本变换器结构外,还针对一些特殊的拓扑结构。利用这些拓扑结构本身特性构成所需要的PFC变换器,以实现提高电路性能,降低成本的目的。控制策略的研究则主要是针对特定的拓扑结构,通过不同的数学和建模分析,寻找最优或最合适的控制方法,以提高整体电路的性能,简化控制电路,降低成本。此外,改进开关器件的性能,也可以从整体上提高电路的性能。  在实际应用中,针对不同的应用场合,对有源功率因数校正电路的要求也是多种多样的。Boost型电路以其控制简单,电流纹波较小等优点得到了广泛应用。从实现PFC的控制策略上来看,又以DCM模式下的变频
[电源管理]
一种有源功率因数<font color='red'>校正</font>电路及控制方法的设计
NCP1601型功率因数校正控制器的原理及应用
摘要:NCP1601型功率因数校正控制器可工作在不连续信号模式(DCM)和临界传导模式(CRM)二种工作模式下。文中介绍NCP1601的结构和特点,详细叙述其工作原理并给出一种典型应用电路。 关键词:功率因数校正控制器 DCM/CRM 原理 集成电路 1 概述 安森美半导体公司推出的NCP1601型功率因数校正(PFC)控制器能不连续传导模式(DCM)和临界传导模式(CRM或BCM)下工作,它兼有二种工作模式的优点。因固定频率DCM可限制最高开关频率,从而限制污染系统环境的传导辐射和EMI噪声。而不定频率CRM则可限制升压MOSFET、二极管和电感器的最大电流,以降低成本,提高电路的可靠性。NCP1601结合DCM与CRM的
[应用]
如何使用 MSP430 内部频率 VLO 以及如何校正频率
1、需求定义 有时候为了节省成本,会尽量减少外部器件的花费,MSP430有一个内部 12KHz 的 VLO 频率,虽然有较大温飘和压飘,通过校正也是可以满足需求的。 2、什么是 VLO Very-Low-Power Low-FrequencyOscillator (VLO),也就是超低功耗低频振荡器; 输出频率:标称 12KHz,3V 下最小 4KHz,最大 20KHz; 功耗: 2.2V 下最大只有 0.7uA,比32K768的手表晶振 1.5uA 还低很多,这已经是 LPM3 模式下功耗最低的时钟源了; 用途:可以用作 MSP430 的 ACLK,MCLK,SMCLK 时钟源; 3、如何使用 VLO
[单片机]
校正电导率流量计的原理及设计
内容说明 本发明涉及一种自校正电导率流量计。 发明背景 目前国内流量计大多采用机械开关和霍尔开关。机械开关由于存在密封难和次数寿命的问题已经逐步淘汰。霍尔开关由于利用铁和磁力的作用实现开关动作,可以不与流经的液体接触,但是其磁场仍会对流经的一些含有铁离子或磁性的液体产生吸附作用而造成误差和液体质量的改变。 流量计在食品领域内采用了不锈钢材质,强度高,无毒害作用,但是不能观察到流动的液体的状态,而且材料价格高昂,加工制作繁琐。其他领域为了降低成本则采用塑料材质,虽然价格较低,加工也较为容易,但是塑料材质易老化,且在有机物质较多的液体使用容易析出有毒有害物质。 现在的流量计只能进行体积的测量,而不能进行质量的测量,尤其在有
[测试测量]
自<font color='red'>校正</font>电导率流量计的原理及设计
影响GPS观测精度的主要误差总结分析
在GPS测量中,影响观测精度的主要误差可分为以下三类: 一、与GPS卫星有关的误差 与GPS卫星有关的误差主要包括卫星的轨道误差和卫星钟的误差 1. 卫星钟差 由于卫星的位置是时间的函数,因此,GPS的观测量均发精密测时为依据,而与卫星位置相对应的信息,是通过卫星信号的编码信息传送给接收机的。在GPS定位中,无论是码相位观测或是载波相位观测,均要求卫星钟与接收机时钟保持严格的同步。实际上,以尽管GPS卫星均设有高精度的原子钟(铷钟和铯钟),但是它们与理想的GPS时之间,仍存在着难以避免的偏差和漂移。这种偏差的总量约在1ms以内。 对于卫星钟的这种偏差,一般可由卫星的主控站,通过对卫星钟运行状态的连续监测确定,并
[嵌入式]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved