温差发电是利用热电转换材料将热能转化为电能的全静态发电方式,具有无噪音、无污染、无磨损、寿命长、体积小等优点,但其输出电压波动大、输出功率小,适用于微小功率的设备使用。
温差发电有完善的物理理论基础和成熟的温差发电片制造技术的支持,从20世纪60年代开始,陆续有一批温差发电机成功用于航天飞机和军事领域。近几年随着温差发电片生产成本的降低与转换效率的不断提高,温差发电技术在工业和民用方面表现出了良好的应用前景。
德国Micropelt公司用MEMS薄膜热电技术,在1mm2的面积内布置了100多个热电偶。该公司的温差发电片MPG-D651,面积仅为8.4mm2,每10℃的温差能产生1.4V电压。该公司与施耐德公司合作生产的用于安装在电力母线上的温度传感器具有无需更换电池的特点。美国Hi-Z公司为车辆余热转换研制的一种热电模块,由71对碲化铋热电偶连接起来,模块在温差200℃时,输出电压为2.38V,功率为19W。日本精工仪器公司研制出一种利用人的体温发电的手表用电池,是使用Bi-Te材料制成的温差发电部件,电池尺寸为2mm×2mm×1.3mm,由50个热电偶串联组成,1℃的温差可产生20mV的电压,输出功率为1μW。
温差发电的基本原理是塞贝克效应。当温差发电片热端置于高温环境(TH)中、冷端置于低温环境(TL)(相对于热端)中时,就会产生电势差VOC。 其中,S表示温差发电片的塞贝克系数,它是由材料本身的电子能带结构决定的系数。
如图1所示,温差发电片的基本单元是热电偶,它由P型、N型半导体通过金属导流片连接在一起,当给热端施加热源时,N型半导体中带负电的自由电子会向冷端扩散,P型半导体中带正电的空穴向冷端扩散,这样形成了由N向P的电流,在冷端形成电势差。如图2所示,一个成型的温差发电片是由若干个这样的热电偶对串联而成。 1 蒸汽涡街流量计的低功耗设计
低功耗仪表的设计技术其电路采用低功耗器件、低电压、较低的工作频率以及部件可睡眠的工作方式。图3是本文研制的低功耗蒸汽涡街流量计的组成框图,从功能看相当于把温度传感器、压力传感器、涡街流量变送器、流量积算仪集成在一起的可电池供电的自动化仪表。
微控制器(MCU)的选择是智能仪器设计的关键之一。本文采用TI公司的16bit超低功耗微处理器MSP430-F5438A,它具有集成度高、性价比好等优点。
涡街流量计测量流体的流量为体积流量,而在蒸汽贸易结算时采用质量流量,因此需要根据蒸汽的温度和压力求取蒸汽的密度。温度传感器采用PT1000,压力传感器采用扩散硅压阻式传感器MB18,传感信号调理电路采用MAXIM公司的18bitA/D转换器MAX1403。MAX1403包含恒流激励源、程控放大器、多个差分输入通道等资源,工作电流约为250μA,在低功耗模式下仅为2μA。为了降低整个系统的功耗,A/D采样的时间间隔是可以设定的,不采样时关断MAX1403。
无线数据通信简化了布线问题。CC1101是TI公司的低成本单片UHF收发器,具有功耗低、使用简单等特点;支持多种调制格式,载波频率可在300~348MHz、400~464MHz和800~928MHz等范围内选择;数据传输率最高可达500Kb/s。本文采用433MHz载波,用SPI接口与CC1101连接。应用CC1101的Wake-On-Radio(WOR)功能,即在无需MCU干预下周期性地从睡眠模式醒来侦听数据包。一旦侦听到有效数据,向MCU产生中断,MCU可及时接收数据,数据处理完毕后进入CC1101的发送模式,数据发送完毕,再进入侦听模式,以降低功耗。通信协议的应用层采用MODBUS协议。
为保证低功耗和宽温的性能,流量计需要根据显示内容而定制LCD,因此采用集成串行接口的LCD驱动芯片HT1621;4个按键分别为功能键、移位键、数字键和退出键,用于参数设置;被设置的参数以及记录的数据存放在I2C接口、容量为128KB的E2PROM芯片FM25V10中。
2 温差发电片的选择和安装
常用蒸汽的温度在400℃以下。本设计所选用的中国纳米克公司的温差发电片(TEG),型号为TEP1-1263-3.4,尺寸为3cm×3cm×0.4cm,基片采用耐高温热电Bi-Te合成材料,热面可以在高达380℃的高温环境下连续工作,冷面则可以在高达180℃的环境下工作;由126个热电偶组成,最大能产生5W左右的功率,有充足的余量满足流量计的需要。
温差发电片安装示意图如图4所示。为避开太阳光的直射而升高冷面温度,取热位置选在涡街流量计的下方。由于TEG不能弯曲,而管道是圆柱形,为保证发电片充分受热和均匀受热,设计了一个导热性能好的铜质弧形导热体,该弧形导热体的弧面与管道通过纳米克公司的耐高温导热硅脂无缝连接,上平面则与温差发电片的热面贴在一起。为得到较大的温差,需要在TEG冷面采用导热性能好的散热片,且散热面积尽可能大。用保温材料包牢弧形导热体,以减少热量的散失。 [page]
电能管理包括TEG的电能收集、锂电池充放电、TEG输出电压、锂电池状态检测和异常报警以及流量计各部件的工作状态控制等功能。如图5所示,电能管理电路由TEG、DC/DC、锂电池充电芯片、锂电池和稳压芯片组成。
3.1 TEG的电能采集
TEG的开路电压与温差的关系如图6所示,输出电压具有较宽的范围。为充分利用热能,本文选取TI公司的升/降压型DC/DC电源芯片TPIC74100-Q1采集TEG产生的电能。该芯片的输入电压范围从1.5V~40V,提供5V恒定输出电压;升/降压模式能自动切换,当输入电压低于5.8V时,进入升压模式;当输入电压超出5.8V时,进入降压模式。TPIC74100-Q1静态工作电流为10μA,可通过时钟调制器及可调节压摆率,减小系统中的电磁干扰(EMI)。
3.2 锂电池充电电路
当蒸汽管道中没有蒸汽流过以及蒸汽刚开始流过时,在TEG上不能形成较大的温差,不能产生电能。为避免流量计因工作不稳定而产生计量误差,需要用后备电池。所选用的锂电池是UltraFire16340(3.7V,880mAH),其有效充放电次数为1000次左右。
锂电池的充电过程是一个复杂的电化学过程,过度充电和深度放电,都会使电池容量衰减较快,电池寿命缩短。因此需要监测电池的电压,在电池电压达到额定值时停止充电。在进行大电流充电时需要用热敏电阻监测电池的温度,以调节充电电流,防止因电池内部过热而爆炸。为保证锂电池的充电效率、使用寿命及安全性,常采取先恒流后恒压的两段式充电方式对锂电池进行充电。本设计选用MAX8606来管理锂电池的充电过程。
3.3 电压监测和异常判断
为保证系统的可靠运行,图5中,AD0、AD1与MCU的12bitA/D输入端连接,分别监测TEG和锂电池的输出电压。当AD0偏低且有流量信号时,表明TEG部分故障;当通过AD1转换值估算的锂电池输出电压小于3.2V时,表明锂电池输出电压不足,锂电池有可能得不到及时地充电或内部损坏。在这些异常情况下,MCU产生并发送报警信息,以便工作人员及时处理。
4 实验
实验时,涡街流量计在3.6V锂电池供电的情况下进行功耗测试,其结果如表1所示。由表可知,整机的最大工作电流接近30mA,即需要电源能输出的功率为0.108W,其中无线通信电路连续运行时大约占用了92.7%的整机功耗。
热端温度从室温开始上升至135℃,此时冷端温度约为30℃,流量计开始正常工作;当锂电池输出电压为3.6V(电量充满)时,测试TEG输出端的电压为2.37V,整个系统电流消耗最大为30.72mA;没有无线通信和采样时,电流消耗为0.95mA。
当在有蒸汽流过管道、温差发电片两端的温差至少在105℃时,能给系统提供持续、稳定的电源;当温差至少在155℃时能给欠压的锂电池充电。
温差发电和无线通信技术的应用,摒弃了传统自动化仪表布线繁锁的缺点,实现了无电源线和数据线的新型蒸汽涡轮流量计,该流量计具有较好的实用价值。(end)
关键字:温差发电 电能管理 无线数据通信 低功耗 涡街流量计
引用地址:热力驱动式无线蒸汽涡街流量计的设计
温差发电有完善的物理理论基础和成熟的温差发电片制造技术的支持,从20世纪60年代开始,陆续有一批温差发电机成功用于航天飞机和军事领域。近几年随着温差发电片生产成本的降低与转换效率的不断提高,温差发电技术在工业和民用方面表现出了良好的应用前景。
德国Micropelt公司用MEMS薄膜热电技术,在1mm2的面积内布置了100多个热电偶。该公司的温差发电片MPG-D651,面积仅为8.4mm2,每10℃的温差能产生1.4V电压。该公司与施耐德公司合作生产的用于安装在电力母线上的温度传感器具有无需更换电池的特点。美国Hi-Z公司为车辆余热转换研制的一种热电模块,由71对碲化铋热电偶连接起来,模块在温差200℃时,输出电压为2.38V,功率为19W。日本精工仪器公司研制出一种利用人的体温发电的手表用电池,是使用Bi-Te材料制成的温差发电部件,电池尺寸为2mm×2mm×1.3mm,由50个热电偶串联组成,1℃的温差可产生20mV的电压,输出功率为1μW。
温差发电的基本原理是塞贝克效应。当温差发电片热端置于高温环境(TH)中、冷端置于低温环境(TL)(相对于热端)中时,就会产生电势差VOC。 其中,S表示温差发电片的塞贝克系数,它是由材料本身的电子能带结构决定的系数。
如图1所示,温差发电片的基本单元是热电偶,它由P型、N型半导体通过金属导流片连接在一起,当给热端施加热源时,N型半导体中带负电的自由电子会向冷端扩散,P型半导体中带正电的空穴向冷端扩散,这样形成了由N向P的电流,在冷端形成电势差。如图2所示,一个成型的温差发电片是由若干个这样的热电偶对串联而成。 1 蒸汽涡街流量计的低功耗设计
低功耗仪表的设计技术其电路采用低功耗器件、低电压、较低的工作频率以及部件可睡眠的工作方式。图3是本文研制的低功耗蒸汽涡街流量计的组成框图,从功能看相当于把温度传感器、压力传感器、涡街流量变送器、流量积算仪集成在一起的可电池供电的自动化仪表。
图3 无线涡街流量计框图
微控制器(MCU)的选择是智能仪器设计的关键之一。本文采用TI公司的16bit超低功耗微处理器MSP430-F5438A,它具有集成度高、性价比好等优点。
涡街流量计测量流体的流量为体积流量,而在蒸汽贸易结算时采用质量流量,因此需要根据蒸汽的温度和压力求取蒸汽的密度。温度传感器采用PT1000,压力传感器采用扩散硅压阻式传感器MB18,传感信号调理电路采用MAXIM公司的18bitA/D转换器MAX1403。MAX1403包含恒流激励源、程控放大器、多个差分输入通道等资源,工作电流约为250μA,在低功耗模式下仅为2μA。为了降低整个系统的功耗,A/D采样的时间间隔是可以设定的,不采样时关断MAX1403。
无线数据通信简化了布线问题。CC1101是TI公司的低成本单片UHF收发器,具有功耗低、使用简单等特点;支持多种调制格式,载波频率可在300~348MHz、400~464MHz和800~928MHz等范围内选择;数据传输率最高可达500Kb/s。本文采用433MHz载波,用SPI接口与CC1101连接。应用CC1101的Wake-On-Radio(WOR)功能,即在无需MCU干预下周期性地从睡眠模式醒来侦听数据包。一旦侦听到有效数据,向MCU产生中断,MCU可及时接收数据,数据处理完毕后进入CC1101的发送模式,数据发送完毕,再进入侦听模式,以降低功耗。通信协议的应用层采用MODBUS协议。
为保证低功耗和宽温的性能,流量计需要根据显示内容而定制LCD,因此采用集成串行接口的LCD驱动芯片HT1621;4个按键分别为功能键、移位键、数字键和退出键,用于参数设置;被设置的参数以及记录的数据存放在I2C接口、容量为128KB的E2PROM芯片FM25V10中。
2 温差发电片的选择和安装
常用蒸汽的温度在400℃以下。本设计所选用的中国纳米克公司的温差发电片(TEG),型号为TEP1-1263-3.4,尺寸为3cm×3cm×0.4cm,基片采用耐高温热电Bi-Te合成材料,热面可以在高达380℃的高温环境下连续工作,冷面则可以在高达180℃的环境下工作;由126个热电偶组成,最大能产生5W左右的功率,有充足的余量满足流量计的需要。
温差发电片安装示意图如图4所示。为避开太阳光的直射而升高冷面温度,取热位置选在涡街流量计的下方。由于TEG不能弯曲,而管道是圆柱形,为保证发电片充分受热和均匀受热,设计了一个导热性能好的铜质弧形导热体,该弧形导热体的弧面与管道通过纳米克公司的耐高温导热硅脂无缝连接,上平面则与温差发电片的热面贴在一起。为得到较大的温差,需要在TEG冷面采用导热性能好的散热片,且散热面积尽可能大。用保温材料包牢弧形导热体,以减少热量的散失。 [page]
图4 安装示意图
电能管理包括TEG的电能收集、锂电池充放电、TEG输出电压、锂电池状态检测和异常报警以及流量计各部件的工作状态控制等功能。如图5所示,电能管理电路由TEG、DC/DC、锂电池充电芯片、锂电池和稳压芯片组成。
图5 电源管理电路图
图6 冷端温度30℃时,开路电压与热端温度的关系
3.1 TEG的电能采集
TEG的开路电压与温差的关系如图6所示,输出电压具有较宽的范围。为充分利用热能,本文选取TI公司的升/降压型DC/DC电源芯片TPIC74100-Q1采集TEG产生的电能。该芯片的输入电压范围从1.5V~40V,提供5V恒定输出电压;升/降压模式能自动切换,当输入电压低于5.8V时,进入升压模式;当输入电压超出5.8V时,进入降压模式。TPIC74100-Q1静态工作电流为10μA,可通过时钟调制器及可调节压摆率,减小系统中的电磁干扰(EMI)。
3.2 锂电池充电电路
当蒸汽管道中没有蒸汽流过以及蒸汽刚开始流过时,在TEG上不能形成较大的温差,不能产生电能。为避免流量计因工作不稳定而产生计量误差,需要用后备电池。所选用的锂电池是UltraFire16340(3.7V,880mAH),其有效充放电次数为1000次左右。
锂电池的充电过程是一个复杂的电化学过程,过度充电和深度放电,都会使电池容量衰减较快,电池寿命缩短。因此需要监测电池的电压,在电池电压达到额定值时停止充电。在进行大电流充电时需要用热敏电阻监测电池的温度,以调节充电电流,防止因电池内部过热而爆炸。为保证锂电池的充电效率、使用寿命及安全性,常采取先恒流后恒压的两段式充电方式对锂电池进行充电。本设计选用MAX8606来管理锂电池的充电过程。
3.3 电压监测和异常判断
为保证系统的可靠运行,图5中,AD0、AD1与MCU的12bitA/D输入端连接,分别监测TEG和锂电池的输出电压。当AD0偏低且有流量信号时,表明TEG部分故障;当通过AD1转换值估算的锂电池输出电压小于3.2V时,表明锂电池输出电压不足,锂电池有可能得不到及时地充电或内部损坏。在这些异常情况下,MCU产生并发送报警信息,以便工作人员及时处理。
4 实验
实验时,涡街流量计在3.6V锂电池供电的情况下进行功耗测试,其结果如表1所示。由表可知,整机的最大工作电流接近30mA,即需要电源能输出的功率为0.108W,其中无线通信电路连续运行时大约占用了92.7%的整机功耗。
热端温度从室温开始上升至135℃,此时冷端温度约为30℃,流量计开始正常工作;当锂电池输出电压为3.6V(电量充满)时,测试TEG输出端的电压为2.37V,整个系统电流消耗最大为30.72mA;没有无线通信和采样时,电流消耗为0.95mA。
表1 流量计在不同状态下的功耗测试表
当在有蒸汽流过管道、温差发电片两端的温差至少在105℃时,能给系统提供持续、稳定的电源;当温差至少在155℃时能给欠压的锂电池充电。
温差发电和无线通信技术的应用,摒弃了传统自动化仪表布线繁锁的缺点,实现了无电源线和数据线的新型蒸汽涡轮流量计,该流量计具有较好的实用价值。(end)
上一篇:热量表自动检定系统设计
下一篇:混合煤气流量测量中的补偿算法及实现
推荐阅读最新更新时间:2024-03-30 22:41
MCU低功耗设计(三)产品
引言: 能耗对电池供电的产品来说是一个重大问题,一旦电能耗尽设备将 罢工 。在《MCU低功耗设计(一)理论》中,我们介绍了节能的原理;在《MCU低功耗设计(二)实践》中,实测了STM8L151C8的低功耗值。 本文介绍无线通信产品的低功耗设计,首先实测MCU与射频芯片I/O设置的功耗,然后测试射频芯片不同模式下功耗,其次使用Contiki系统的energest模块实时跟踪能耗值,最后总结低功耗设计和展望无线组网中低功耗特征。Let sgo! 一、 无线通信产品简介 iWL881A无线通信模块是 长沙市锐米通信科技有限公司(www.rimelink.com) 的LoRa长距离低功耗产品(如下图),它内嵌高效强大的物联
[单片机]
STM8 低功耗的时钟管理
STM8降低系统时钟 在运行模式,为了即能满足系统性能又能降低功耗,选择合适的系统时钟源是很重要的。可通过写时钟控制寄存器选择时钟源。参见时钟控制章节。 通过写时钟分频寄存器CLK_CKDIVR的位CPUDIV ,可降低fCPU的时钟频率。这会降低CPU的速度,但同时可降低CPU的功耗。其它外设(由fMASTER提供时钟)不会受此设置影响。 在运行模式下,任何时候需要恢复全速运行,将CPUDIV 清0即可。 STM8外设时钟门控 为了更进一步降低功耗,可使用时钟门控。用户可在任意时间打开或关闭fMASTER与各个外设的连接。参见时钟控制章节。 此设置在运行模式和等待模式均有效。
[单片机]
LED灯的散热管理的低功耗设计方案
散热管理 是新型 LED 灯中最困难、要求最严格且成本最高的设计部分。如果不进行充分的散热管理,将会造成照明失效或火灾等灾难性后果。不过,LED灯的散热管理是整个设计方案中最复杂、要求最严格且成本最高的部分。本文将探讨如何实施负温度系数(NTC)散热管理,以充分提高LED设计的安全性并大幅降低功耗。 传统的白炽灯泡中,不与任何东西直接接触的灯丝是唯一热源。而对于LED灯而言,LED即是光源,LED的散热直接与LED灯泡相接触。这种直接接触是受LED与驱动器电路的连接方式使然。为了实现散热,必须将热量从LED和驱动器电路中释放出去或者加以有效管理,同时这也是让LED灯保持长期工作的基本前提。 为了解散热管理的重要性,我们不妨设想
[嵌入式]
蓝牙联盟将在CES上展示蓝牙低功耗音频标准
蓝牙联盟将在CES上新的蓝牙LE(低能耗)音频和真无线立体声(TWS)方案,低功耗音频是最值得关注的,它扩展了音频体验的广度,这包括广播和多源流传输,共享的聆听以及从附近的电视和监视器获取源的功能。 真无线立体声 蓝牙经典版是单通道无线协议,因此,两个音频通道都只传输到一个耳塞,一个通道在第一个耳塞中播放,另一个通道在第二个耳塞中转发并播放。供应商已通过多种专有方式(通常锁定在特定的芯片组或电话品牌中)解决了左右声道之间的转发或补偿延迟问题,这种重建的立体声流的质量并不理想-转发的耳塞会消耗传输中的功率,从而缩短电池寿命。 蓝牙5.2标准引入了对源(例如您的手机)和接收器(例如耳塞)之间的低功耗蓝牙同步通道的支持。左右音频通道
[物联网]
MSP430主系统时钟以及430的低功耗设置
如何将系统时钟设置到外部高频晶体振荡器,430的MCLK默认的是DCO的,如何安全的从DCO切换到外部晶体振荡器,这是一个很重要的步骤,因为经过此步骤,可以极大地提高430的处理能力,DCO在内部,可以为cpu提供强劲稳定的时钟 #include msp430x14x.h void main( void ) { // Stop watchdog timer to prevent time out reset WDTCTL = WDTPW + WDTHOLD; volatile unsigned int i; P5DIR |=BIT4;//设置P5.4为输出 P5SEL |=BIT4;//设置片内主系统时钟的输
[单片机]
关于超低功耗MCU,您就不看看瑞萨电子的RL78么?
近日,瑞萨电子在天津举办了技术研讨会,会议期间瑞萨电子中国通用解决方案中心市场部统括经理吴频吉介绍了瑞萨电子的RL78产品系列特点,以及瑞萨电子针对中国市场的MCU产品特点。 吴频吉表示,RL78系列具有三大主要特点,分别是低功耗——最低46μA/MHz、可扩展性——1KB-512KB Flash、高效——最高1.39DMIPS/MHz,此外RL78系列拥有超级全面的产品线,同时也有不断开发新品的蓝图,以满足客户未来的产品升级需求。 RL78系列分为通用产品和集成LCD驱动的产品,通用产品的升级款又围绕着传感器、小系统、马达驱动等具体应用领域做了相应拓展。 在可扩展性上,RL78提供多个产品型号,引脚数量从10pin到128
[单片机]
蓝兆推出小尺寸低功耗的蓝牙智能模块 BLE113
芬兰埃斯波2013年3月14日电 /美通社/ -- 蓝牙与 Wi-Fi 连接模块的领先供应商蓝兆科技 (Bluegiga Technologies) 今天宣布推出全新的 BLE113 蓝牙智能模块。BLE113 进一步丰富了蓝兆的蓝牙智能产品系列,其峰值功耗降低30%,尺寸减少30%并且提供一个硬件 I2C接口,简化了与微型机电系统 (MEMS) 外围传感器的连接性。BLE113 还包括主板应用管理、灵活的外围接口以及超低功耗的睡眠模式等功能。 (图标: http://photos.prnewswire.com/prnh/20120524/533415 ) 蓝兆产品管理与营销副总裁 Mikko Savolainen 评论说:“
[手机便携]
低功耗、低成本无线心电图监视仪设计技巧
除了性能、可靠性、低功耗以及成本等因素,无线心电图监视仪设计必须支持专用的遥测频段,以使监视仪的心电图数据可以迅速、准确、安全的传输至数据采集器进行评估。如何设计一个低功耗、低成本的无线心电图监视仪?本文将给你相关指导。 传统心电监护仪通常需要随身携带记录监视仪,放在靠近病人颈部或腕部的口袋里,而无线心电图监视仪的噪声和干扰大大降低,尺寸减小到甚至可以安装在电极背面,能够提供比传统方案更精确的信号。这种电路价格便宜,且能够提供诊断质量的1导联心电图迹线,驱动腿免除了对60Hz陷波滤波器的需求。所有的电路都能穿戴在衣服内,因此患者舒适度和隐私度大幅提高。病人的监测数据经过加密,每隔几分钟就自动上载至医院、护理机构或养护
[医疗电子]