基于PCI-9846的航空导航VOR信号综测仪设计

发布者:创新驿站最新更新时间:2014-09-01 来源: eefocus关键字:VOR信号  软件无线电  PCI-9846  高速数字化仪 手机看文章 扫描二维码
随时随地手机看文章

引言
航空电子设备的测试要求利用有限的资源,构建功能多样化的自动测试系统。机载电子设备的信号多且复杂,涵盖了低频和高频信号、连续和离散信号,同时还包括一些非电信号。传统的测试系统采用分立仪器搭建,这种方法成本高,测量自动化程度低,扩展性差。随着民用航空运输业的发展,大部分机载飞行电子设备高度数字化、集成化,已不可能靠人工手动对其进行测试检查。所以目前世界各发达国家均采用自动测试设备完成此类工作。


软件无线电的基本思想是以一个通用、标准、模块化的硬件平台为依托,通过软件编程来实现无线电台的各种功能,从基于硬件、面向用途的电台设计方法中解放出来。自动测试系统对信号源的灵活性和全面性提出了更高的要求,传统的信号发生器难以满足需求。与之相比,基于软件无线电的信号发生器由于它所具有的灵活性、开放性等特点,有着突出的优势,更加适应需要。同时,这也将为相关的教学研究提供便利。


将凌华科技PCI-9846H运用于自动测试系统信号源的测试和校准中,以航空导航VOR信号为例,对信号进行采集和处理,还原出基本信息。证明数字化仪的性能指标可以满足需要。


1.VOR信号


甚高频全向信标的基本功用是为机载VOR接收机提供一个复杂的无线电信号,经机载VOR接收机解调后,测出地面甚高频全向信标台相对于飞机的磁方位即VOR方位。机载接收机接收到的空间合成VOR信号包括基准相位信号和可变相位信号,通过对两种信号相位的比较来实现定向。VOR工作频率范围108MHz~117.95MHz,波道间隔0.05MHz。


1.1 VOR基准相位信号


VOR基准相位信号(Reference Phase Signal)包括射频载波和9960Hz的副载波。射频载波的频率范围从108MHz~117.95MHz。9960Hz的副载波被30Hz基准信号调频,调制系数16,表达式为:


式中,mR是副载波对射频载波的调幅系数,fs为副载波频率,mf为对副载波的调制系数,F为基带信号频率,f0为射频频率。


基准相位信号在空间0°~360°各径向方位上辐射信号的强度和所含30Hz信号的相位都不变,辐射场的水平方向性图为一个圆。


1.2 VOR可变相位信号


可变相位信号(Variable Phase Signal)只包含单纯的射频载波,频率范围108MHz~117.95MHz。两对正交的边带天线分别辐射正弦调制边带波和余弦调制边带波,场强均按30Hz的规律变化,这样在空间就生成了一个30Hz正弦规律改变的调幅波,表达式为:


式中α是当前VOR径向方位角。


1.3 合成信号


空间接收到的合成信号(Composite Signal)包括基准相位信号和可变相位信号的叠加,如图1所示,表达式为:


接收机通过解调和比较二者的相位差得到方向信息。


图1:空间合成信号


2.系统实现
采用以GPP(General-Purpose Processor,通用处理器)为基础的体系结构,直接用工控机进行数字信号处理。对于这种无线电系统,从实体上无法观察到一个真正的电台,它完全从软件角度解决无线电通信问题。由于通用机不是一个实时的同步系统,不适于严格定时采样信号的实时处理,只能通过中断来保持一定的同步。但是因其开放性、灵活性、可编程性和人机界面方面的优势,最接近理想的软件无线电,也更适于测试、教学和研究。


系统选用流水线形式进行连接,与信号流方向一致,具有很高的效率,时延短,处理数率高,可以一定程度上弥补GPP信号处理速度慢的不足。但是由于各模块之间采用实际电路互联,模块间耦合紧密,独立程度不高。如果系统功能改变,需要增加、去除或修改某一模块,牵扯到相应的模块变动,甚至总体结构的改变。因为设计目的是针对测试系统信号源的测试和校准,信号相对固定,不需要频繁变动,所以选用流水式结构,结构框图如图2所示。信号的产生和处理由工控机完成,任意波形发生模块(Arbitrary Waveform Generator,AWG)实现波形输出(高频时需要用到数字上变频卡),如果做无线发射和接收时需要附加天线和射频放大器。信号的采集和数模转换由凌华科技PCI-9846高速数字化仪完成,转换结果可以实时显示,也可以保存成波形文件以便后续处理。


图2:系统框图

2.1 信号源


中频信号用PXI-5421产生。这是一款可进行板载信号处理(OSP)的任意波形发生器,具有16位分辨率和-91dBc封闭式无寄生动态范围(SFDR),可为要求数字上变频和基带插值的应用提供仪器质量标准。作为一款功能齐全的AWG,PXI-5421还能够生成通用的电子测试信号,其最大输出范围为12Vpp,50Ω电阻载荷,最高频率43MHz。上变频卡采用NI PXI-5610,其内有2.7GHz上变频器,具有高实时带宽和稳定的时基,其精度可达±50ppb。在射频生成应用中,与模块化函数发生器紧密集成,可产生频率范围50kHz到2.7GHz的信号,可调增益范围130dB。PXI-5421产生高频VOR信号送至PXI-5610做上变频处理,变频到需要的甚高频波段。[page]


PXI板卡安装在NI PXI-1402控制箱内。采用NI PXI-PCI833x套件,可使用通过铜缆连接的完全透明的MXI-4网络在计算机上控制PXI模块。MXI-4通过在PCI-PCI高带宽连接上搭建桥路,通过计算机的PCI接口对PXI系统进行远程控制。


2.2 数据采集


用凌华科技PCI-9846高速数字化仪完成数据采集。凌华科技PCI-9846是具有40MHz采样频率的16位4通道数字化仪,专为高频率、大动态范围信号设计,最高输入频率可达20MHz。模拟输入量程可以通过软件设定为±1V或±0.2V,可选择50欧输入阻抗,以适应高速、高频信号。装有4通道高线性16位A/D转换器,可以理想地适应诸如雷达、超声波及软件无线电等大动态范围信号。


配合高达512MB的板载内存,PCI-9846可以记录更长时间的波形而不受限于PCI总线的传输速率。数字化的信号数据在传输到主存储器以前先被存储到板载内存。数据传输采用SG-DMA(Scatter-gather Direct Memory Access,分散-聚集直接内存读取)方式,可以提供更高的数据传输率,并可更有效的利用系统内存。如果数字化仪的数据传输速率低于可用的PCI总线带宽,PCI-9846还设有一个板载取样点先进先出存储器,以实现绕过板载内存而实时直接将数据传输到主机内存。


PCI-9846具有灵活的触发选项,包括软件触发、外部数字触发、任意模拟通道的模拟触发以及PXI总线触发。多样的触发方式使其更适应需求。后触发、延迟触发、前触发及中触发模式可以采集触发事件附近的数据。PCI-9846也可以重复触发采集,以便对极短时间间隔的多个数据段进行采集。PXI背板提供的多种触发选项使PCI-9846可以简便地实现多模块同步。利用PXI触发总线,PCI-9846可以在设置为“主”时向PXI触发总线输出触发或时基信号,在设置为“从”时从PXI触发控制槽接收触发或时基信号。PXI背板提供精准的10MHz信号也可以用作一个时基信号源。


PCI-9846包含一个精确的低温度漂移板载基准。这不但可以提供一个稳定的校准源,亦能保证在较大温度变化范围的数据采集稳定性。自动校准过程通过软件完成,不需要任何手动调整。一旦校准过程完成,校准信息将被存储在板载EEPROM(Electrically Erasable Programmable Read-Only Memory,电可擦除可编程只读存储器),需要时校准值可从板上加载。


2.3 软件部分


LabVIEW是NI(National Instruments,美国国家仪器公司)的创新软件产品,其全称是实验室虚拟仪器工程平台(Laboratory Virtual Instrument Engineering Workbench),是一款基于G语言(Graphics Language,图形化编程语言)的测试系统软件开发平台。信号产生、数字化仪调用和数字信号处理在LabVIEW2010环境下进行。

由于机器性能有限,程序分为产生、采集和处理三部分。根据信号建模的结果(参考“1.3 合成信号”),计算得出波形数据并保存到文件。在波形的产生程序中,先把波形数据读出并写入任意波形发生器,调用其产生所需要的信号。调用DAQPilot相关模块控制数字化仪进行信号采集,并存储到文件以便后续调用。解调程序调用此波形文件,进行相关解调及运算,完成信号分析。信号的产生与采集程序框图如图3所示,解调和运算程序框图如图4所示。


图3:信号产生与采集程序

图4:信号解调程序

3. 运行结果
按照设计的硬件结构连接好硬件,设置波形信息,基带信号为30Hz正弦波,调频副载波9960Hz,频偏480Hz,调制系数0.3。考虑机器性能及运行时间,VOR信号以1MHz为例。计算得出的波形存储到文件中,以便在波形产生程序里调用。在波形产生程序中,先对设备进行初始化和参数调整,设定板卡地址,功率为-10dBm,中心频率1MHz,模式为“Arb Waveform”。调用时候采用IQ调制,I路为调制信号,Q路为0。写入数据时选择与生成时相同的采样率,才能保证生成信号的频谱正确。


信号产生模块持续运行,并调用数字化仪进行采集。同样需要设置虚拟通道,量程±1V,信号类型“AI Voltage”,采样频率须满足乃奎斯特定理,此处选为8MHz,采样时钟设定为“Continuous Samples”,持续时间1秒。采样后的数据可以实时在波形图表中显示,并通过“写入波形数据到文件.vi”存入文件,以便后续调用。


为实现对信号的测量和验证,需要对采集的波形进行解调并还原出相应的信息。采集到的VOR空间合成信号经过相干解调后得到空间合成信号的外包络,包括30Hz的可变相位信号,和9960Hz的调频副载波。30Hz可变相位信号经过30Hz滤波器直接得到,前面板可见其时域、频域波形以及频率、相位和幅值等信息;9960Hz副载波经过滤波后鉴频,得到30Hz基准相位信号,前面板可见其相应参数。基准相位信号与可变相位信号的相位差可指示当前的方位信息,读书为VOR方位角。运行后的前面板如图5所示。程序运行时,其中的各个标签页可以轮流显示,按下右下方的“暂停”钮可以锁定当前标签页。


图5:综测仪前面板

4. 结论
软件无线电技术目前在军用、民用通信领域已经有广泛的应用。基于此技术的测试设备因为其开放性和灵活性,比传统设备有更加广阔的应用前景。而数字化仪正是实现模拟信号向数字信号过渡的关键。经验证,凌华科技PCI-9846高速数字化仪安装简便,操作界面人性化,可以在LabVIEW环境下方便地调用,胜任复杂模拟信号的准确采集和模数转换,并能存储成波形文件便于后续调用。限于技术水平和电脑性能,不能做更高频率的采样和信号处理实验,有待今后工作中继续研究改进。

关键字:VOR信号  软件无线电  PCI-9846  高速数字化仪 引用地址:基于PCI-9846的航空导航VOR信号综测仪设计

上一篇:如何选择射频测试仪器
下一篇:基于超声导波的结构健康状态无损检测及在线监测

推荐阅读最新更新时间:2024-03-30 22:46

利用软件无线电提升车载无线应用的设计灵活性
最近几年,无线应用已经有了快速而且广泛的发展。毫无疑问,无线设备给我们的生活和工作带来了极大的便利,比如,手机使我们能够随时随地地进行对话,大大地提高了沟通的效率。与此相对应,越来越多的无线技术被创新性地集成在汽车应用中,使驾驶也成为了一种舒适生活的体验。下表列举了目前常见的汽车无线应用。 这些还没有包括红外无线应用、遥控钥匙等,加上将来肯定会集成到车内的无线互联网络和4G通讯网络,汽车相关的无线系统会涵盖一个相当大的范畴。然而无线应用不仅要适用于相关的频率,还要满足规定的调制算法。所以现有的车载无线应用都是采用单独的软硬件模块来实现的。比如收音机,普遍的解决方案是利用一个收音机模块进行收音解调,然后通过专门的通讯协议(比如I2C
[嵌入式]
软件无线电的射频天线
    摘要: 在软件无线电的诸多关键技术难点中,射频天线的实现是一个很重要的方面,探讨了国内外近几年这方面的发展状况。     关键词: 软件无线电 多频段和宽带天线 智能天线 软件无线电是近几年提出的一种新的无线电通信的体系结构。其基本概念是把硬件作为无线电通信的基本平台,而将尽可能多的通信功能转为用软件实现,从而改变了长期以来通信电台一直沿袭的为某一特定用途设计,采用“硬布线”和“硬件堆集”的传统方法,使得无线通信的新系统、新产品的开发逐步由硬件设计转到软件设计上来。这样,系统和产品的改进与升级换代,不同系统之间的互联互通,只需更换软件即可。非常方便且代价小。可以预料,软件无线电出现,与个人PC所经历的
[网络通信]
软件无线电的射频天线
    摘要: 在软件无线电的诸多关键技术难点中,射频天线的实现是一个很重要的方面,探讨了国内外近几年这方面的发展状况。     关键词: 软件无线电 多频段和宽带天线 智能天线 软件无线电是近几年提出的一种新的无线电通信的体系结构。其基本概念是把硬件作为无线电通信的基本平台,而将尽可能多的通信功能转为用软件实现,从而改变了长期以来通信电台一直沿袭的为某一特定用途设计,采用“硬布线”和“硬件堆集”的传统方法,使得无线通信的新系统、新产品的开发逐步由硬件设计转到软件设计上来。这样,系统和产品的改进与升级换代,不同系统之间的互联互通,只需更换软件即可。非常方便且代价小。可以预料,软件无线电出现,与个人PC所经历的
[应用]
HSP50214BPDC及其在软件无线电中的应用
    摘要: 介绍了HSP50214B可编程下变频器的结构组成、工作机理、引脚功能、技术特性和应用范围,并结合作者的开发经验谈了几点应用体会,最后给出了一个实用的数字中频软件无线电实验系统。     关键词: 软件无线电  数字下变频器  HSP50214B     软件无线电 代表着包括无线通信在内的几乎所有的无线电电子信息系统的发展趋势,其核心思想就是将模数/数模变换器尽量靠近天线,在对信号充分数字化的基础上依靠软件来定义无线电的各项功能。在现阶段由于各种关键器件,特别是受ADC(模数变换器)和DSP(数字信号处理器)发展水平的限制,数字中频软件无线电 正成为理想软件无线电的一种经济、适用的折中选择。在数
[网络通信]
软件无线电中DSP应用模式的分析
    摘 要: 软件无线电是未来移动通信的一个重要研究方向。系统地介绍了软件无线电的特点及其体系结构,并结合DSP芯片TMS320C541分析了它的一种应用模式。     关键词: 软件无线电 数字信号处理器(DSP)VME(Virtual Machine Environment)总线         软件无线电是基于同一硬件平台上,安装不同的软件来灵活实现多通信功能多频段的无线电台,它可进一步扩展至有线领域 。 其主要特点如下:     ·系统功能软件化:软件无线电将A/D变换尽量向射频端靠拢,将中频以下全部进行数字化处理,以使通信功能由软件来控制,系统的更新换代变成软件版本的升级,开发周期与费用
[网络通信]
瞄准软件无线电和感知无线电,ETSI试水可重新配置射频
  欧洲电信标准协会(European Telecommunications Sdandards Institute,简称ETSI)正在使其可重新配置射频系统方面的工作正式化,并且组建了一个技术委员会负责开发和标准化问题。软件定义无线电(SDR)和感知无线电技术(cognitive radio,CR)都是可重新配置射频系统。   可重新配置无线电系统技术委员会(TC RRS)的成立大会计划在2008年3月19-20日召开,地点是位于法国Sophia Antipolis的ETSI总部。   ETSI表示,合作研发项目已经对这些问题进行了大量研究,许多项目得到了欧洲委员会(EC)的资助,ETSI成员在这项活动中一直发挥着主导作用。
[手机便携]
AD6645型模/数转换器在软件无线电中的应用
1 引言   软件无线电是基于一种通用的硬件平台,通过加载不同的软件实现不同的无线通信功能.它是一种全新的开放式结构体系,其核心设计思想是在尽可能靠近天线的地方使用宽带A/D转换器,在射频段将信号数字化,在DSP中用软件实现所有功能.受硬件发展水平的限制,目前存在二大瓶颈:一是A/D转换器的速率和性能,二是DSP的处理速度.A/D转换器在系统中所处的位置是很关键的,因为它直接反映软件化的程度.对理想的软件无线电而言,A/D转换器的动态范围必须为100dB~120dB,最大信号输入频率在1GHz~5GHz之间,目前器件发展水平很难实现这些技术指标,即使实现了这些指标,如此大的数据量也是后面DSP无法承担的,所以折中的方案就是进行
[应用]
基于凌华科技PCI-9846 的航空导航VOR信号综测设计
• 应用领域 航空导航设备测试应用,信号产生与采集。 • 挑战 航空电子设备的测试要求利用有限的资源,构建功能多样化的自动测试系统。机载电子设备的信号多且复杂,涵盖了低频和高频信号、连续和离散信号,同时还包括一些非电信号。传统的测试系统采用分立仪器搭建,这种方法成本高,测量自动化程度低,扩展性差。随着民用航空运输业的发展,大部分机载飞行电子设备高度数字化、集成化,已不可能靠人工手动对其进行测试检查,传统的仪器也难以满足需求。与之相比,基于软件无线电的信号处理机制由于它所具有的灵活性、开放性等特点,有着突出的优势,更加适应需要。同时,这也将为相关的教学研究提供便利。 • 解决方案 以航空导航VOR信号为例。研究VOR导航原理,
[工业控制]
基于凌华科技<font color='red'>PCI-9846</font> 的航空导航<font color='red'>VOR</font><font color='red'>信号</font>综测<font color='red'>仪</font>设计
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved