如何选择频谱分析仪的视频滤波器带宽

发布者:colchery最新更新时间:2016-07-25 来源: mwrf关键字:频谱分析仪  视频滤波器  带宽 手机看文章 扫描二维码
随时随地手机看文章
频谱分析仪用户有可能使用过频谱分析仪的一项功能——视频滤波器宽带 (VFB),但并不真正理解它的含义。大多数用户有可能仅仅模模糊糊知道该功 能大概是用于什么,或怎样利用它获取最佳的结果。因此,一般情况下,VFB一 直保持着它的默认状态,尽管该状态并不是最坏的设置,但也有可能不是最优 的。通过理解VFB的正确使用方法,大多数频谱分析仪的测量都能够得到大大改善。

   不合适的VFB设置可能引起极大的测量误差,因此,了解何时需要改变VFB 的设置就非常重要(特别是当默认的设置有可能引起麻烦时)。VFB设置的正确 使用可以保证完成最佳的测量。

    频谱分析仪中的视频滤波器仅与显示有关,更准确地说,与分析仪屏幕上 显示有关.VFB是指放大显示信号的电路(或滤波器)的带宽,该电路的准确命 名是检波器后电路,因为视频滤波器接在检波器之后,而大多数频谱分析仪用 户熟知的分辨率滤波器则位于检波器的前面。

    非常窄的检波器后带宽等效于一个平均电路,因此,视频滤波器有时也当 作一个信号平均器使用。不管怎样描述或使用,VFB要与分辨率带宽(RB)一起 理解,否则,VFB值没有任何意义。例如,10KHz宽的VFB既可以认为宽也可以 认为窄,这要根据分辨率带宽滤波器而定,若RB滤波器设置为1KHz,10KHz的 VFB认为是宽;但若RB设为1MHz,10KHz的VFB就认为是窄。VFB通常要同RB滤波 器一起考虑(以比值形式),该比值应根据欲显示的信号类型以及要完成或测 量的参数而定。

    一般的默认设置是将VFB设为与RB相等,RB是独立变量,而VFB要根据RB的 设置而变。因此,只要保持默认设置,当分辨率带宽变化时,VFB随之而变,但 VFB的变化并不影响RB的设置。一旦VFB单独变化,就不再是默认设置(耦合或 自动位置),不再受RB变化的影响。为什么要使VFB比RB宽一些或窄一些呢? 有 两方面的原因:一是满足特殊信号类型的显示需要,二是与先进的频谱分析过 程有关。频谱分析仪通常测量三种基本的信号类型——正弦波、脉冲和那些码分多址 (CDMA)和正交幅度调制(QAM)中使用的或其它随机或伪随机分布的随机信 号。VFB的设置对纯正弦波没有什么意义,虽然随着VFB降低、测量时间将增 加,但VFB的变化对信号显示没有什么影响。因此,除非有更好的原因,没有必 要将VFB设置得比RB小一点。可能的原因是正弦波信号的噪声问题,当有噪声 时,较窄的VFB可以平滑噪声,使正弦波的显示更好一些。通常,对于正弦波信 号,最好是保留VFB的默认设置。

    脉冲信号需要较宽的VFB以进行最好和最精确的测量和显示。有些频谱分析 仪用户认为3:1的VFB/RB比足够了,而有些人则认为需要10:1,作者认为5:1 的比值就相当够了。不过,默认的1:1比值也能提供可接受的测试结果,大多 数人仍然保持默认的设置。但是,若是做到VFB与RB不`相关,并且使之宽于 RB,能得到最准确的频谱显示和测量结果。

    随机信号的变化性带来了测量问题,其频谱在每次扫描时都发生变化,获 得稳定的可重复显示的最简单方法是将信号通过一个较窄的VFB进行显示平滑。 此处的“窄”通常是指至少采用100:1的RB/VFB比,为了得到更高准确度的结 果,该比值还有可能为1000:1或更高,这意味着当RB为10KHz时,将VFB设为 10Hz一点也不奇怪。不过,非常窄的VFB将大大增加测量时间,只有必要时才使 用。

    在进行先进的测量时,VFB有可能时宽时窄以完成复杂的测量过程。具体如 何设置不能在一般意义上讨论,每种方法都不同,同时取决于要完成的测量任 务。以下举两个例子以说明这种观点。

    非常窄的VFB可作为平均电路,对于脉冲信号的平均值取决于占空系数,即 通断比。因此,1μs宽的脉冲宽度和1KHz的脉冲重复频率(PRF)就有1000:1 的占空系数比,平均指将为峰值下20log(1000)=60dB。

    另一个例子是脉冲信号采用较宽的VFB设置。此时,感兴趣的是显示和测量 调制脉冲信息,测量时要使用频谱分析仪的零频宽方式,即将分析仪的整个屏 幕设置为仅显示一个频率,这样就能得到检波或解调的时域显示波形。

关键字:频谱分析仪  视频滤波器  带宽 引用地址:如何选择频谱分析仪的视频滤波器带宽

上一篇:场强测量与场强仪及频谱分析仪
下一篇:脉冲S参数测量中的跟踪技术

推荐阅读最新更新时间:2024-03-30 23:19

频谱分析仪选型小贴士,这十一点要注意
频谱分析仪主要的功能是在频域里显示输入信号的频谱特性,对信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数进行测量。频谱分析仪有扫频式及实时两种类型;扫频式频谱仪是最常见的频谱分析仪,通过本振扫描的方式来实现测试范围内信号的频率、功率等参数测试。而实时频谱分析仪则是在某个固定带宽内通过实时数据采集,并进行 FFT 分析来得到带宽范围内信号的幅度、频率参数测试,速度是扫频式的上百倍甚至千倍以上。 频谱分析仪广泛应用于通用频谱分析、 射频记录和回放 、 EMC 一致性测试和故障排除 、频谱监测、无线电定位和干扰搜寻等,被称为射频万用表,那么在选择频谱分析仪时要注意哪些指标呢?安泰测试技术工程师建议大家在选型时以下11点要注
[测试测量]
<font color='red'>频谱分析仪</font>选型小贴士,这十一点要注意
手机无线通信测试技术 采用频谱分析仪
本文将对手机无线通信中遇到的问题提出相应的解决方案。随着国家发放3G牌照运营许可证,中国进入了3G时代。面对这新的机遇和挑战,无论是通信运营商还是手机制造商都开始进行新一轮激烈的竞争。手机在进行通信时存在着频段控制、通信质量检测和信号大小控制等问题。被射频工程师称为“射频万用表”的频谱分析仪在频谱分析方面的绝对优势可以帮助解决这些问题。 问题一:各个通信运营商要控制自己的通信频段 国际电联对通信的频段进行了严格的定义,工业和科学通信、固定和移动业务、卫星通信等通信方式都必须在各自的频段内进行,即使在同一个频段内各种业务的通信也有严格的定义。如果通信的频段带宽超出自己分配的范围,不仅会干扰其他通信且会影响自身的通信能量。所以需要
[测试测量]
手机无线通信测试技术 采用<font color='red'>频谱分析仪</font>
R&S基于FSW信号与频谱分析仪率先发布5G新空口分析固件
罗德与施瓦茨公司(以下简称R&S公司)为3GPP 5G新空口的测试铺平道路。现在,研发人员可以使用最新的FSW 5G新空口分析固件验证5G基站和相关的元器件例如功率放大器。 2018年2月6日,慕尼黑——R&S公司率先发布5G新空口下行分析固件。该固件选件用于R&S FSW信号与频谱分析仪,可以来验证基站信号和5G功率放大器。作为最先使用该软件的使用者,现在R&S公司可以根据客户要求在正式发布之前,提供固件选件,来支持客户5G产品上市。 这是在R&S FSW信号与频谱分析仪上第一个专门用于5G 新空口的固件选件。它支持不同的子载波间隔和子载波带宽,sub-6GHz频段和毫米波频段。 现在研发人员可以根据3GPP标
[测试测量]
R&S基于FSW信号与<font color='red'>频谱分析仪</font>率先发布5G新空口分析固件
怎样提高数字定位器的带宽
数字电位器可广泛用于控制或调整电路参数。由于数字电位器本身带宽的限制.只能用于直流或低频应用。其典型一3 dB带宽在100 kHz至几MHz内,具体数值与型号有关。然而,通过采用下面介绍的简单方法,可以将电位器的信号带宽从10倍提高到100倍,可以获得4 MHz的O.1 dB带宽以及25 MHz以上的一3 dB带宽。这样可使数字电位器用于视频或其他高速应用领域。 字串7 2 有限的调整范围 在许多应用中,数字电位器用于信号微调,而无需从0%到100%的满量程调整,例如:一次性工厂校准等。在这些应用中,数字电位器一般提供10%以下的调整范围。正是借助这一有限的调整范围来提高数字电位器的带宽。 字串1 3 典型应用电路
[模拟电子]
怎样提高数字定位器的<font color='red'>带宽</font>
正确理解频谱分析仪的技术指标
  射频和微波频谱分析仪甚至在原理上也是不简单的。将这两种频谱分析仪称为校正的超外差接收机仅能反映它们有什么功能及如何实现这些功能。如将它们称为频域示波器,则反映的内容就更少了。此外,如果只是走马观花地看一看这项技术,那你就会得出错误的结论:在过去十年里,射频和微波频谱分析仪没有多大变化。然而,在迅猛发展的无线技术领域,能够显示频率高达3GHz以上——常常达到7GHz,有时达到20GHz--信号的频谱分析仪事实上正在发生重大变化,其重要性也正在大大提高。   更糟糕的是,为某项任务选择最为合适的分析仪可能是个很大的难题,当你的上司不明白这一选择过程为什么不只是对一两份制造商产品说明书上的价格和一些参数进行比较而已时,尤其是这样
[测试测量]
频谱分析仪的应用领域及工作原理---安泰频谱仪维修
频谱分析仪广泛应用于无线电技术的各个领域,例如:电子对抗、卫星通讯、移动通讯、散射通讯、雷达、远控远测、侦察干扰、射电天文、卫星导航、航空航天和频谱监测等领域。频谱分析仪对各种类型的信号进行丈量和分析时,可丈量信号的不同特性。例如:信号的传输和反射特性丈量、谐波失真丈量、三阶交调丈量、激励响应测试、载噪比测试、信道功率丈量、相位噪声丈量、卫星频谱丈量、互调丈量和电磁干扰丈量等等。 频谱仪根据工作原理的不同可分为即时频谱仪和扫频调谐式频谱仪两种。其中,即时频谱仪还可分为多通道滤波器频谱仪和快速傅氏变换频谱仪;扫频调谐式频谱仪还可分为扫描射频调谐型频谱仪和超外差式频谱仪。 频谱分析仪的工作原理 首先,将被测模拟信号经模数转换模
[测试测量]
<font color='red'>频谱分析仪</font>的应用领域及工作原理---安泰频谱仪维修
【技术反窃密装备篇】—无线频谱分析仪
上一篇介绍了非线性节点探测器,本篇介绍一下无线频谱分析仪。文章只介绍常用品牌和型号,只对设备的技术规格做说明,不做任何对比和引导。 无线频谱分析仪 其快速扫描超宽频段内的非法、未知等射频信号进行探测、分析和追踪。全方位快速排除危险信号,具备信号定位,视频截获解码,频谱自动对比等功能。 美国REI OSCOR Green 24G频谱分析仪可1 秒内扫描 24GHz频率范围内所有的未知、违法、有破坏性和反常的窃听信号并进行定位,它内置所有天线无需切换。能够快速对周围所有的信号进行辨别,实时分析当前环境,依靠强大的解调能力,全方位快速排除危险信号,具备信号定位,视频截获解码,频谱自动对比等强大功能。 英国 HSA-Q1频谱分
[测试测量]
【技术反窃密装备篇】—无线<font color='red'>频谱分析仪</font>
用PowerPC实现高带宽 TCP/IP 性能
今天,实现线速 TCP/IP 性能仍旧是一项重大设计挑战。在本文中,我们将讨论限制 TCP/IP 性能的单位字节和单位包的处理成本,并给出在基于嵌入式处理器的应用中实现千兆位以太网 TCP/IP 性能最大化的技术。   千兆位以太网性能的获得是通过利用多端口 DDR 存储器控制器,在嵌入式 PowerPC处理器局部总线 (PLB) 接口与两个数据端口之间分配存储器带宽而实现的。每个数据端口连接到一个直接存储器访问 (DMA) 控制器,从而允许硬件外设对存储器进行高带宽访问。    系统架构   存储器带宽对高性能网络连接应用来说是一个重要考虑事项。通常,外部 DDR 存储器为处理器和一个或多个高带宽外设(如以太网)所共享。一个
[应用]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved