基于SOPC的工业大型吊车吊钩位置测量的设计

发布者:leader5最新更新时间:2016-09-28 来源: eccn关键字:SOPC  吊车吊钩  位置测量 手机看文章 扫描二维码
随时随地手机看文章
1. 引言

在大型工业吊车运行中由于吊车司机位置往往离地面很高(一般为20米到50米),司机很难能准确判断出吊钩的准确位置,只能完全依靠地面人员的指挥,这样效率低下,而且生产安全完全由地面指挥人员负责,发生事故的概率较高。为了能使吊车司机知道吊钩的实时准确位置,提高生产率,降低事故的发生率,本文提出了一种基于SOPC(system on a programmable Chip 片上系统)的高度测量方法。SOPC技术是将整个系统集成到单一半导体芯片上,在单一芯片上集成数字,信号采集和处理,I/O接口,存储器,MCU(微处理器)和DSP(数字信号处理器)等芯片。采用SOPC技术可以减少外围电路芯片,降低整机成本,提高设计的可靠性。

本文设计采用Atlera公司的FPGA:CycloneII 1P2C8[1]作为系统控制的核心实现SOPC。其灵活的现场可更改性,可再配置能力,对系统的各种改进非常方便,在不更改硬件电路的基础上还可以进一步提高系统的性能。该设计具有高速、精确、可靠、抗干扰性强和现场可编程等优点。

2.测量原理

   工业龙门吊车一般由吊钩、动滑轮组、滚筒组成,电机通过减速机驱动滚筒,带动吊钩在垂直平面上下移动。这样通过对滚筒的旋转位移测量而转换得到吊钩的垂直位移。通过在滚筒轴心安装旋转编码器可以实现对其位移的测量。

        (1)

其中    S  吊钩对地的垂直距离;

N 吊钩发生S位移内旋转编码器记录的脉冲数;

N1 动滑轮组数;

N2 旋转编码器的P/R;

L  吊钩的上级限到底面的距离;

D 滚筒直径。

根据公式(1)可知当旋转编码器已定,吊车的动滑轮组数已定,滚筒直径和吊钩的上级限到底面的距离可以测量得到,吊钩对地面的垂直距离就只于吊钩发生于地面垂直位移内旋转编码器纪录得脉冲数有关。

3.整体设计思想

由公式(1)可知,对于吊钩的垂直位移测量通过该公式转换成了对安装在滚筒同轴的增量旋转编码器输出脉冲的计数。再通过对于吊车动滑轮组数N1、旋转编码器的P/R N2、吊钩的上级限到底面的距离L和滚筒直径D这四个参数的设置,经过计算得出吊钩对于地平面的垂直距离。

4系统结构及功能

 

                           图一

4.1 编码器信号输入及光电隔离模块

编码器信号输入模块负责增量式旋转编码器的信号输入,光电隔离模块负责编码器信号和系统板的电隔离。增量旋转式编码器选用欧姆龙的E6B2集电极开路输出。由于滚筒直径比较大(一般大于1m)并且转动速度比较慢,编码器输出频率比较低(<10k/s),光电耦合器选用TLP系列。此模块接收编码器的A,B两相信号,和吊车上级限信号(上级限信号是无源常开节点)。当吊车吊钩运行到上级限时,上级限信号闭合,FPGA接收信号并且把上级限到底面的距离L装载入计数器初值。

4.2 EMI和电源模块

由于该设计应用于工业现场,为了解决现场的电源干扰问题,本设计使用了X电容,Y电容和共模电感对电源进行滤波,通过变压器和稳压模块得到+24v,+3.3v,+1.5v分别提供编码器电源电压,CycloneII 1P2C8的IO口电源电压和核心电源电压。

4.3       FPGA控制模块

FPGA采用ALTEra CycloneII 1P2C8,该器件拥有8256个LE单元,36个 M4K模块,能满足本设计要求。FPGA模块采用自顶向下的设计方法[2],首先自顶向下地生成各设计阶层(本设计为二层结构),将设计任务分解为不同的功能元件,每个元件具有专门定义的输入输出并执行专门的逻辑功能。然后,生成一个由各功能元件相互连接形成的顶层模块。最后设计其中的各个元件。本设计顶层模块用图形描述,直观,清晰,可扩展性强,底层元件用VHDL[3]描述。

FPGA按功能分解为以下六个功能块:滤波模块(filter),编码器相位识别模块(phasecheck),装载模块(MCload),计算模块(Calplus),双向计数模块(Count16bit),显示驱动模块(LEDControl)。FPGA 顶层图形描述见图一。

系统接收光电码盘的信号A,B通过滤波模块滤除尖峰,凹峰等信号干扰,通过编码盘相位识别模块识别吊车滚筒正转反转状态(即吊车吊钩上移下移状态),并且把信号和正反转状态送入双向计数器记录脉冲个数。装载模块把N1、N2、 L和 D四个参数装载,并计算得到每个脉冲对应吊钩的位移距离。计算模块接收实时脉冲数、每个脉冲对应的吊钩位移距离和吊钩的上级限到底面的距离计算出吊钩实时相对于地面的距离,再通过显示模块解码并直接驱动LED显示吊钩实时高度。以下是滤波模块的VHDL描述

 

                               图一 

library IEEE;

use IEEE.Std_logIC_1164.all;

use IEEE.std_logic_signed.all;

use IEEE.std_logic_arith.all;

entity fitter is port(clk,A:in std_logic; AOUT:out std_logic); end entity filter;

architecture Crane of filter is

signal data0,data1,data2,data3,data4,data5:integer range 0 to 1;

signal dataall:integer range 0 to 7;

begin  

process(clk)

begin

      if clk'event and clk='1' then

        if A='1' then data0<=1;else data0<=0;end if;

        data1<=data0;data2<=data1;data3<=data2;data4<=data3;data5<=data4;

        dataall<=data0+data1+data2+data3+data4+data5;

        if (dataall>=3) then  AOUT<='1';  else  AOUT<='0'; end if;

     end if;

end process;

end architecture Crane;

5.应用实例

本设计成功应用于武钢二炼钢56吨龙门吊车中。该吊车上极限离地面距离18m,滚筒直径1000mm,吊钩滑轮组数为5,安装在滚筒轴心的增量式旋转编码器为欧姆龙的e6b2-cwz6c漏极输出式,分辨率为360P/R。 经过计算每个脉冲对应吊钩上下距离为1.74mm,装载计数器的初值为10345。

调试初期发现吊钩显示位移比理论值要大,但是在实验室条件下正常,故怀疑编码器脉冲输出在现场受到干扰。在现场换了屏蔽线后此现象依然存在,用便携式示波器观测发现,编码器信号在经历一定长度传输后信号发生了畸变,每个脉冲的高电平中间有48us凹峰,经过光耦进入FPGA时就引起了误计数,针对此凹峰我们设计了开窗滤波器(filter),经过实际调试消除了现场干扰问题,图二是从现场采集的波形,图三是加滤波器采集到的波形。

 

               图二                                  

  图三

6结束语

  本文提出了应用FPGA和旋转编码器的SOPC设计测量工业大型吊车吊钩位置。该设计具有测量精度高、成本低、运行可靠、维护量少的特点。该设计成功应用于武钢二炼钢,其吊车主要任务是将炼钢完成后的钢包从距离地面约九米的操作台吊到地面冷却区域冷却,由于钢包体积较大,一般司机凭感觉将吊钩碰撞一下着钩处才能定位,由于吊钩重量很重( 大约1吨)这种碰撞对于承载钢包的万向轴危害很大,在应用本设计后吊车司机能很准确的知道吊钩的位置而不用靠碰撞来定位,延长了万向轴的寿命,提高了一次定位成功率,缩短了生产时间,提高了生产效率。

参考文献:

[1] Cyclone II Device Handbook. www.altera.com
[2] skahiuk.可编程逻辑系统的VHDL设计技术。南京:东南大学出版社,1998
[3] 林敏,方颖立。VHDL数字系统设计与高层次综合「M].北京:电子工业出版社,2002。


关键字:SOPC  吊车吊钩  位置测量 引用地址:基于SOPC的工业大型吊车吊钩位置测量的设计

上一篇:采用FPGA实现发电机组频率测量计的设计
下一篇:A/D转换器测试技术及发现ADC中丢失的代码

推荐阅读最新更新时间:2024-03-30 23:24

基于NIOS II的导航系统平台的设计
    目前广泛应用的MIMU/GPS组合导航系统的实现形式,依应用领域的不同而复杂多样,但是导航计算机板卡负责的工作则相对固定,其主要包括:采集各路传感器输入信号;滤波、融合计算;将计算结果输送给机电控制子系统;提供各种人机交互接口,如LCD,键盘等。       长期以来,针对各种应用领域或相同领域的不同场合,由于对控制计算能力、接口电路数据吞吐能力等要求的差异,我们习惯于把功能相对固定的导航计算机子系统设计成不同的实现形式,这就造成了对硬件重复研发,相应软件重复调整等低效率现状。       SOPC(System On Programmable Chip)技术是Altera公司提出的一种灵活高效的SOC解决方案。它的宗旨是
[嵌入式]
基于SOPC的简易运动控制芯片方案
    现在的 运动控制 器已经发展到了以专用芯片(ASIC)或FPGA作为核心处理部件的开放式运动控制器。这样的解决方案突出的特点,是让运动控制的处理部分以独立的、硬件性方式展开,增加系统的性能和可靠性,从而有效地解决了以单纯的MCU或DSP系统的处理带宽限制,以及用户系统软件和运动控制软件混杂性的问题。 业界也早已出现了各种类型的运动控制专用芯片,虽然有较高的功能、性能,但一般都比较复杂,使得客户应用起来非常困难。 用户们常常需要一种容易使用的运动控制芯片与通用MCU/CPU结合起来的系统方案,用以面向更一般性的或中低端的应用场合。这样的方案里,运动控制芯片部分可以担当关键的马达控制信号发生功能,又可以拥有较高
[工业控制]
基于SOPC基本信号产生器的设计与实现
摘要:介绍一种基于SOPC的基本信号产生器的设计技术,以Altera公司EP1C6Q240C8为硬件核心,把软核CPU嵌入到FPGA之中构成片上系统(SOPC),并结合存储电路、高速DAC电路、LCD电路、键盘电路、JTAG配置电路以及电源电路等进行了硬件电路的设计,以此实现基本信号产生器。阐述了各主要模块设计方案,并给出软硬件测试图。通过示波器观察,满足了系统设计要求,达到预期目标。 关键词:FPGA;SOPC;Nios II;DDS;基本信号产生器 SOPC是以PLD取代ASIC,更加灵活、高效的SOC解决方案。SOPC的设计是通过以IP核为基础、以硬件描述语言为主的设计手段,并借助于以计算机为平台的EDA工具进行的
[嵌入式]
基于<font color='red'>SOPC</font>基本信号产生器的设计与实现
利用FPGA协处理器优化汽车信息娱乐和信息通信系统
集成了数据通信、本地服务和视频娱乐功能的高端汽车信息娱乐系统需要高性能的可编程处理技术支持,将FPGA协处理器整合进主流汽车信息通讯系统架构是最理想的解决方案。本文提出了汽车娱乐系统的要求,讨论了主流系统架构,并介绍如何将FPGA协处理器整合进硬件和软件架构以满足高性能处理要求、灵活性要求及降低成本的目标。 娱乐电子正成为豪华汽车之间差异化的主要方面,因而推动了其性能和功能的快速发展。如何折衷考虑性能、成本和灵活性要求是设计工程师面临的挑战。高端应用包括卫星收音机、后座娱乐、导航、各种类型的音频回放、语音合成和识别,以及其它新的应用。 汽车娱乐系统用的核心技术与传统的汽车应用有本质的区别。与汽车电子的其它领
[嵌入式]
利用FPGA协处理器优化汽车信息娱乐和信息通信系统
基于FPGA的速度和位置测量板卡的设计与实现
增量式光电编码器作为速度和位置传感器被广泛应用于伺服系统。理论上,光电编码器反馈脉冲的频率对应被测轴转速,反馈脉冲个数的累加值对应位置信息。经典的速度测量方法有M法、T法和M/T法3种:其中M法通过计取固定时间间隔内光电编码器的反馈脉冲数计算当前转速,适用于高速场合;T法利用高频脉冲测量相邻反馈脉冲的时间间隔计算当前转速,适用于低速场合;M/T法不仅测量固定时间间隔内反馈脉冲的增量值,而且计数该时间内的高频脉冲数。虽然M/T法克服了M法和T法测速范围有限的缺点,在高速和低速段都具有较高的分辨率及较低的测速误差,但是存在低速采样时间过长等问题。经典的位置测量方法按转向的正负对反馈脉冲进行增减计数,然后将计数值乘以脉冲当量K得到当前位
[测试测量]
基于FPGA的速度和<font color='red'>位置</font><font color='red'>测量</font>板卡的设计与实现
基于μClinux的SoPC应用系统设计详解
嵌入式系统一般由嵌入式微处理器、外围硬件设备、嵌入式操作系统以及用户应用程序四部分组成,其发展主要体现在芯片技术的进步上,以及在芯片技术限制下的算法与软件的进步上。随着芯片制造技术的发展,嵌入式系统的结构也随之发生了重大变革,从基于微处理器的嵌入式系统到基于微控制器的嵌入式系统,继而将可编程逻辑PLD(Programmable Logic Device)技术引入到嵌入式系统设计中,进而又发展到SoC(System on Chip),最终将PLD与嵌入式处理器结合而成为SoPC(System on Programmable Chip),使得SoPC成为嵌入式系统设计的一个发展趋势。    本文采用SoPC内嵌32位的软核处理器Nios
[单片机]
绝对位置测量系统的高速接口
位置编码器经常应用于以可编程逻辑控制器(PLC)为基础的控制系统。这些系统的线路通常设计为点点连接。当这样的设计要求将位置值快速的传送到PLC 时,通常需要复杂的电缆配置结构。 图1:旋转编码器的普通通讯结构 现在的流行趋势是通过在PLC 与传动装置及 传感器 之间使用区域总线结构(如:CAN、Interbus-S、Profibus-DP 等)来减少电缆的复杂性。与点点结构相比,区域总线传送位置值需要更长的时间。一个带有几个传动装置及传感器的传送时间通常为一或几个毫秒。由此在控制环中产生的停滞时间是许多应用软件所不能接受的。同时,一个带有区域总线接口的位置编码器的价格也比较昂贵。因此,带有区域总线接口的位置编码器的最佳配置是
[嵌入式]
G.726语音编解码器在SoPC中的实现
  G.726是ITU前身CCITT于1990年在G.721和G.723标准的基础上提出的关于把64kbps非线性PCM信号转换为40kbps、32kbps、24kbps、16kbps的ADPCM信号的标准。G.726标准算法简单,语音质量高,多次转换后语音质量有保证,能够在低比特率上达到网络等级的话音质量,从而在语音存储和语音传输领域得到了广泛应用。   G.726语音压缩算法已经能够在以DSP处理器为核心器件的DSP应用系统上实现。但开发以DSP处理器为核心的DSP应用系统所采用的开发方法是自底向上的设计流程,严重影响开发的效率和成功率。面对现代通信技术的发展,DSP处理器暴露出硬件结构的不可变性、处理速度比较慢等不足。现代
[安防电子]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved