HCNR201的工作原理
HCNR201是Avago公司推出的高线性光耦器件,通过外接不同的分立器件,可以实现交直流电流和电压的光电隔离转换电路,其内部结构如图1所示。HCNR201由高性能的AlGaAs型发光二极管及两个具有严格比例关系的光电二极管PD1和PD2构成。当发光二极管中流过电流IF时,其所发出的光会在光电二极管中PD1、PD2感应出正比于LED发光强度的光电流IPD1、IPD2,其中IF、IPD1、IPD2满足以下关系:
(1)
(2)
(3)
式中K1、K2分别为发光二极管PD1、PD2的电流传输比,其典型值为0.48,范围为0.36~0.72;K3为该光耦的传输增益,其典型值为1,范围为0.95~1.05。
图1 HCNR201内部结构图
光电二极管PD1接入输入回路,用于检测和稳定AlGaAs型发光二极管的发光强度,有效地消除了发光二极管的非线性、漂移等特性,而光电二极管PD2作为输出电路的一部分,能产生与发光二极管发光强度成线性关系的光电流,实现测量电路与输出电路之间的线性传递。特性极其相似的光电二极管及先进的封装工艺保证了该光耦的高线性度、传输增益稳定等特性。
电压、电流测量电路的工作原理
图2给出了测量电压、电流的电路原理图,本电路实现了被测信号与系统的隔离及线性测量的双重功能,它既可测量直流电压信号、也可测量直流电流信号:当跳针JP跳到1和2时,该电路进行直流电压测量;当跳针跳到1和2时,该电路将输入直流电流Iin转换成直流电压进行测量。稳压管D1可防止过电压对电路的冲击,起到保护测量电路的作用。电压跟随器A1具有输入高阻抗、输出低阻抗的特性,能够有效地减小采样电路的负载对输入信号的影响,使得后一级的电路更稳定地工作。电容C1、C2用于防止运放A2、A3自激现象,使运放电路稳定地工作。运放A2、发光二极管LED、光电二极管PD1与阻容元件一起构成输入电路,光电二极管PD1为运放A2引入负反馈,若发光二极管LED发光强度发生变化,运放A2就会调整IF的大小以调节发光二极管的发光强度,从而使得稳定流过光电二极管PD1、PD2的电流。运放A3、光电二极管PD2与阻容元件一起构成输出电路,将流过光电二极管PD2的光电流信号转换为电压信号。
图2 电压、电流测量电路
1 电压测量原理分析
被测信号是电压信号Vin时,将跳针跳到1、2。根据运算放大器“虚断”、“虚短”特性,有:
(4)
(5)
结合式(1)、(2)、(3)可得:
(6)
故: (7)
2 电流测量原理分析
被测信号是电流信号Iin时,将跳针跳到2、3,采样电阻R1将电流信号转化为电压信号,以供后续的电路测量。此时,电压测量电路的输入电压为
(8)
故: (9)
实验结果与分析
为提高测量精度,运算放大器A1、A2、A3采用ADI公司的高精度运放AD8672,采用±12V电源供电,需要注意的是运放A1、A2与运放A3的电源和地要做好隔离,以防止外界干扰信号通过电源和地窜入到系统中。通过Pspice仿真和多次的实验,最终电阻R2、R3、R4选取为200kΩ、1kΩ、200kΩ,电容C1、C2选取为4700pF,稳压管选取为UDZ10。根据公式(7)可知:Uout=K3Uin。
对范围为0~10V的直流电压信号进行测量,针对不同的输入电压,对输出电压进行测量,取得20组数据,如表1所示。运用Excel“图表工具”中“XY散点图”进行分析,得到拟合直线方程为y=0.9981x+0.001,如图3所示。利用该拟合直线可计算出电压测量电路的线性度为0.75%。
图3 电压测量时输入输出的关系
图4 测量电流时输入输出的关系
对范围0~30mA直流电流进行测量,针对不同的输入电流,对输出电压进行测量,取得6组数据,如表1所示。同样利用Excel的工具绘制出输入电流与输出电压的关系图,如图4所示,并得到拟合直线方程为y=x-0,利用该拟合方程计算出电流测量电路的线性度为0.85%。
上一篇:DC-DC模块的电源纹波测量方案
下一篇:运算放大器电路固有噪声分析与测量第八部分:爆米花噪声
推荐阅读最新更新时间:2024-03-30 23:27