v锥与孔板信号噪声比的比较研究

发布者:huanguu最新更新时间:2016-12-10 来源: eefocus关键字:v锥  孔板  信号噪声比 手机看文章 扫描二维码
随时随地手机看文章

1 引言

本文讨论比较了 v 锥流量计和普通孔板流量计的相对信号噪声。文中,将一个恒定不变的流量下,差压信号中的波动(起伏)定义为信号噪声。v 锥流量计的用户反映,当用 v 锥取代传统的孔板流量计后,信号噪声明显减小。在有干扰的流动条件下, 更能感受到这种最明显的差别。由于信号噪声减小,用户能对差压变送器使用较少阻尼而获得更好的信号读数。

为量化上述信息,mccrometer 公司开展了一系列的测试研究工作,对 v 锥和孔板信号进行了比较。采用空气作为被测介质。在同一管线中,在两个相同的扰流件的下游安装被测试的 v 锥和孔板。这两个相同的扰流件是:一个 90°弯头和一个开度为 10%的闸阀。利用这两个扰流件造成被干扰的流动条件。测试结果表明:如与孔板相比较,v锥具有明显减小的信号噪声。

信号噪声对过程控制系统的运行会有明显的影响。实际应用中常利用一个流量计的信号来进行过程控制。对于流量的改变,该信号必须立即作出响应。差 压式流量计没有可动部件,对任何流量变化,它都能有及时的响应。遣憾的是孔板、喷嘴和文丘里管等传统的差压式流量计对于管道中的流动干扰也立刻响应。这些 流动干扰可由普通管件(如弯头和阀门等)造成。从节流装置(孔板、喷嘴或文丘里管)出来的差压信号将在流量信号上表现出由流动干扰造成波动(起伏)的噪声 信号。这种波动(起伏)迫使人们必须对信号求时间平均值(即进行阻尼)。由于在孔板的下游有流动循环区(即大漩涡),这使得孔板还产生附加的噪声。

通常在差压变送器内都设有阻尼机构,它对差压信号进行阻尼(抑制),从而使这个流量计系统的响应时间加长。在许多重要的使用场合,这是不能接受 的。如安装在天然气压缩机之前的“防喘振”流量计,这些流量计用来测量进入压缩机的天然气流量。如果检测出大流量,控制系统必须在数秒内关闭压缩机,以避 免气轮机超高速旋转。如果流量计系统需要阻尼,则因响应时间过长会引发相当大的动态误差。

在一个动态控制系统中,信号噪声也会造成故障。一个波动(起伏)强烈的差压信号会引发控制系统的“徘徊”,或连续不断地进行调整。一个较平稳的信号则能实现快速响应而同时不失稳定性。

2测试

2.1 测试程序

在首次测试中,采用如下仪器设备,如表 1 所示。

每一个测试点为测量差压信号都采用了完全相同的仪表。任何系统波动(起伏)都将由两个流量计同等程度地检测出来。测试时的管道连接状况如图 1 所示。

在 60s 内,对测试点的数据进行采集,使得信号波动(起伏)的若干个周期都能被检测出来。每秒取100 个数据点。对于每一个被测试的流量,总共能取得 6000 个测试点的数据。在进行所有的测试时,管道中空气压力一直保持为 50psia(磅力/in2绝压,约352 kpa绝压)。管道中空气的温度接近70°f(约21℃)。

2.2 测试结果

由于在相同的流量下,v 锥和孔板所产生的信号水平不同。有几种比较的方法,这里给出两种方法:

(1)方法 1:在相同的雷诺数和相同的线速度下,比较相对信号噪声。

(2)方法 2:在相同差压值下,比较相对信号噪声。

图 2、图 3 和图 4 示出采用方法 1 的测试结果,相对应的 值分别为 0.45、0.60、0.75。每次测试时所选配的雷诺数及线速度都在这 3 个图上示出。这使得人们能在类似的管道条件下,对不同流量计的信号噪声进行比较。由于不同流量计的响应不同,因此 v 锥的差压读数与孔板的差压读数不同。

在图 5、图 6 和图 7 上,则示出了采用方法 2 进行测试比较的结果,相同对应的 值分别为 0.45、0.60、0.75。每次测试时,选配的差压值都在相应的图中示出。这使得人们能在相同的信号水平上,但在不同的管道条件下,对孔板与 v 锥这两种流量计进行比较。

表 2 归纳总结了采用方法 1 和 2 进行测试的结果。

表 2 中的“噪声比率”是在每个测试点上标准偏差对差压信号平均值的比率。利用这个比率可直接比较不同条件下的两种流量计的噪声水平。“相对于 v 锥的噪声比率比”则直接表示出噪声比率的比值。这是相对于 v 锥、孔板的相对噪声量。如数值“2.8”,说明孔板差压信号噪声是 v 锥差压信号噪声的 2.8 倍。

3结论

对 v 锥和孔板的测试结果进行比较,表明 v 锥的信号噪声要小得多。无论是在选配的相同流量下还是相同差压下,v 锥的信号噪声都明显较低。

v 锥信号的稳定性是由于 v 锥流量计内 v 锥体的几何形状及取压位置造成的。它的下游取压孔位于管道中心轴线上,该取压孔朝向流体下游。该中心取压孔测量的是在锥体尾部周围流过来的“被合成的”流 动。该流动的被合成,是因流体沿着锥体的整个 360°流过来,在取压孔所在的中心轴线处汇合。在 v 锥体的下游尾部低压取压孔处,各种干扰被混合而互相抵消。孔板的取压孔则是开在管壁上。孔板的下游取压孔将受到孔板下游处循环大漩涡的影响。这些大漩涡并 不会合成流动中的各种干扰,而只能被进一步放大。

v 锥发生低噪声信号的能力是其能在低差压下正常进行测量的关键和基础。


关键字:v锥  孔板  信号噪声比 引用地址:v锥与孔板信号噪声比的比较研究

上一篇:孔板流量计的工作原理及适用范围
下一篇:V锥流量计与孔板流量计相比有哪些优势

推荐阅读最新更新时间:2024-03-30 23:29

流量计计量不准确的原因及提高测量精度的方法
孔板流量计是一种常用的流量测量仪器,是将标准孔板与多参数差压变送器配套组成的高量程比差压流量装盒子。孔板流量计在计量过程中会产生一定的误差问题,那么造成孔板流量计的原因是什么呢?下面小编就来具体介绍一下孔板流量计计量不准确的原因及提高精度方法,希望可以帮助到大家。 1 孔板偏心 根据GB2624-81规定,孔板应与节流装置中的直管段对中。实验表明,孔板偏心引起的计量误差一般在2%以内,孔径比β值愈高,偏心率影响愈大,应不用值高的孔板。 2 孔板弯曲 由于安装或维修不当。使孔板发生弯曲或变形, 导致流量测量误差较大。在法兰取压的孔板上进行测试,孔板弯曲产生的最大误差约为3.5%。 3 孔板边缘尖锐度 孔板入口边缘磨损变钝不锐或受腐
[测试测量]
一体化流量计安装事项注意
大家都知道,一体化孔板流量计在管道中的使用是很频繁的,这种流量计与一般的流量计不同,它在性能上有了很大的提升,在测量行业中可以发挥出其最佳性能。不过,要想发挥出一体化孔板流量计的最佳性能,在安装这种流量计的时候就要多家注意。   安装孔板流量计的时候,大家一定要注意地点的选择,最好是选择前后都是直管段的管道,这样当流体经过节流装置的时候,会更加方便一些。另外,流体经过管道最好是单向流体。这样在安装的时候才会更加顺利。安装孔板流量计的时候,其开孔直径必须要符合相关要求。   安装孔板流量计的时候,要保证流量计的法兰与管道焊接必须要是垂直的,千万不要倾斜了。管道的直径也有一定的要求,一定要符合相关要求。如果是使用一体化孔板流量计
[测试测量]
标准流量计测量精度及安装注意
孔板流量计现场测量的时候,经常会由于一些客观的因素而导致测量结果误差较大,下面就给大家主要介绍下保证孔板流量计测量精度的主要措施:      1,孔板流量计进行逐台标定。大家都知道,标准孔板只要设计制造参照相关标准,不需要实流标定就可以直接使用。因为流出系数可以直接由软件算出,但是计算机计算毕竟的比较理想的,和现场环境还是有一定差别的,所以,为了保证测量精度,建议对每台流量计进行实流标定,把标定出的流出系数和计算结果进行比对,算出差值,进行修正。      2,雷诺数修正,孔板流量计的流量系数和雷诺数之间有确定的关系,当质量流量变化时,雷诺数成正比变化,因而引起流量系数的变化。      3,温度对孔板流量计的影响及其修正,流体温
[测试测量]
流量计管内凸出部分的压力测量
孔板流量计是差压测量时的一次元件,人们利用它在管道内使流体产生差压,利用导压管把节流装置前后产生的压差传送给差压变送器,再输入到二次仪表,便显示出管道内液体的瞬时流量或累计流量。 孔板流量计 测量管内无收缩或凸出部分的压力污水处理分厂必须对污水的流量进行监控。在以往的设计中,孔板流量计重度等外界因素的影响,测量管内部无收缩或凸出部分的压力损失,另外,流量元件检测出的最初信号,是一个与流体平均流速成精确线性变化的电压。 根据污水具有流量变化大、含杂质、腐蚀性小、有一定的导电能力等特性,板流量计测量污水的流量即被测介质垂直于磁力线方向流动,因而在与介质流动和磁力线都垂直的方向上产生一感应电动势EX感应电动势EX与被测介质流量成正比,
[测试测量]
提高V流量计的测量精度的方法有哪些
V锥流量计现场测量的时候,经常会由于一些客观的因素而导致测量结果误差较大,下面就给大家主要介绍下保证V锥流量计测量精度的主要措施: 1,V锥流量计进行逐台标定。大家都知道,标准V锥只要设计制造参照相关标准,不需要实流标定就可以直接使用。因为流出系数可以直接由软件算出,但是计算机计算毕竟的比较理想的,和现场环境还是有一定差别的,所以,为了保证测量精度,建议对每台流量计进行实流标定,把标定出的流出系数和计算结果进行比对,算出差值,进行修正。 2,雷诺数修正,V锥流量计的流量系数和雷诺数之间有确定的关系,当质量流量变化时,雷诺数成正比变化,因而引起流量系数的变化。 3,温度对V锥流量计的影响及其修正,流体温度变化引起密度的变化,从而
[测试测量]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved