ADC噪声性能测试和调试配置

发布者:心有所属最新更新时间:2018-06-02 来源: 电子设计 关键字:ADC 手机看文章 扫描二维码
随时随地手机看文章

你评估过一个ADC的噪声性能,并且发现测得的性能不同于器件数据表中所给出的额定性能吗?在高精度数据采集系统中实现高分辨率需要对模数转换器 (ADC) 噪声有一定的认识和了解。有必要了解数据表如何指定噪声性能,以及外部噪声源对总体系统性能的影响方式。其中的一个噪声源示例就是我的同事Ryan Andrews在他的博文,“小心!你的ADC的性能也许只和它的电源性能差不多。”中所谈到过的电源噪声。在这篇博文中,我将会看一看基准噪声如何影响增量-累加ADC中的DC噪声性能。

如图1所示,你可以用短接至中电源电压的正负输入来指定和测量一个ADC的DC噪声性能。通过测量这个条件下的噪声,ADC输出代码内的噪声几乎不受基准电压、基准噪声或输入信号噪声变化的影响。虽然这个测试条件相对于实际应用来说是一个过于理想的情况,它的确较好地给出了一个不受某些外部噪声源影响的ADC噪声性能。

图1:ADC噪声性能测试(和调试)配置

提示:调试时,在开始其它系统噪声性能测试之前,用评估隔离式ADC噪声性能的短接输入测试来开始评估系统的噪声性能。

基准噪声如何影响ADC DC噪声性能

这个影响与ADC的基本任务相关;而ADC的基本任务就是提供一个输出代码,来表示输入信号电压与基准电压的比率。输入和基准电压都会将一个噪声项添加到这个比率中,如方程式1所示:

(1)

输入信号噪声,

,对于ADC转换结果的影响是非常直接的。ADC将捕捉未被滤除掉的任何噪声—使用外部电阻-电容 (RC) 滤波器,或者增量-累加ADC的信号滤波器进行过滤。由于

对于方程式1中的比率有直接影响,你可以在输出代码中进行观察。

提示:在评估ADC噪声性能时,由于输入信号的噪声直接影响ADC的输出结果,请确保输入信号是一个低噪声源。

然而,基准噪声,

,对于ADC转换结果的影响并不直接,这是因为

出现在分母中。当分子为零时(就与ADC输入被短接的情况一样),这个比率始终为零,而

项将不会影响比率。当分子与分母大体相等时,

将会对比率有很大的影响。当比率介于0和1之间时,

的影响由比率值来衡量。图2显示的是得出的特性运行方式。

图2:ADC和基准噪声与输入电压之间的关系

当通过使用均方根增加的方法将基准噪声添加到ADC的噪声中时,这个组合噪声是输入电压的函数,它会在正或负输入电压变大时增加。在图2中的曲线上,有几个点需要注意:

  • 点A,这是用ADC数据表中给出的短接输入测得的ADC噪声。

  • 点B,这是总带宽限制基准噪声,通常受到ADC数字滤波器带宽的限制。

如果你知道针对噪声源的噪声频谱密度和噪声带宽的话,你就能够计算出基准噪声(点B);否则的话,将一个满量程电压输入施加到ADC上,并且测量噪声性能,这样通常能够获得一个比较好的基准噪声测量值。

如何选择一个基准电压源

对于在整个ADC输入范围内实现低噪声/高分辨率性能来说,一个低噪声基准十分重要。基准噪声需求将取决于系统的目标分辨率、输入信号范围和数据速率(而这通常限制了输入和基准噪声带宽)。当噪声带宽受到较慢数据速率限制时,或者输入信号跨度被限制在ADC满量程范围内的一个较小区间内,系统能够耐受额外的基准噪声。

很多增量-累加ADC包含一个集成基准,它为大多数应用提供了充足的性能。对于要求更加严格的应用,使用一个外部基准也许可以提升输入处于正和负满量程范围附近时的噪声性能。外部高精度基准可以实现更低的噪声性能,这是因为它们的功耗更高。图3将24位ADS1259增量-累加ADC的噪声性能与内部基准源、一个外部REF5025电压源,以及一个比例换算的基准源进行比较。

图3:具有内部、外部和比例换算基准源的ADS1259噪声性能

虽然外部基准也许能够实现比集成基准更好的噪声性能,而比例换算基准配置的表现更佳。一个比例换算配置在基准电压和输入信号激励方面共用同样的电压源。通过共用一个共同的电压和噪声源,方程式1中的和往往在比率中相互抵消。

当你下次评估ADC的噪声性能时,请确保将基准噪声效应考虑在内。此外,只要传感器需要一个激励源,比例换算测量实现方式应该成为你的首选。

关键字:ADC 引用地址:ADC噪声性能测试和调试配置

上一篇:甲醛污染已经成为威胁人类健康水平和幸福指数的重要因素
下一篇:学习探头选型指南方案,如何选好探头呢?

推荐阅读最新更新时间:2024-03-30 23:37

从传感器到ADC的危途:工程师应如何做?
有没有一个模块能让我直接将微小的传感器输出信号转换为ADC输入电压? 有的,ADI公司最新仪表放大器系列可以一举完成如下任务:抑制共模信号,放大差模信号,将电压转换为符合要求的ADC输入电压,并且保护ADC免受过压影响! 在无数的工业、汽车、仪器仪表和众多其他应用中,普遍存在一项挑战,就是如何将微小的传感器信号正确连接到ADC,以实现数字化和数据采集。传感器信号通常很微弱,可能有很高噪声,看上去像是一个非常高的阻抗源,位于大共模(CM)电压之上。这些都是ADC输入所不乐见的。本文将介绍最新集成解决方案,可以彻底解决工程师提出的超出当前能力范围的问题。本文还会详细介绍设计步骤,以便配置一个完整的传感器接口仪表放大器来驱动AD
[模拟电子]
从传感器到<font color='red'>ADC</font>的危途:工程师应如何做?
八通道24位微功耗无延时△-∑模数转换LTC2408
摘要: LTC2408是美国LINEAR公司开发的具有低噪声、低协耗、高速度等特性的△-∑模数转换器。它可直接接收来自传感器的输入信号,适合于测量大动态范围的低柴频信号,可广泛应用于压力测量、直接温度测量、气体分析等领域。文中介绍了LTC2408的工作原理及应用电路。 1 概述 LTC2408是美国LINEAR公司开发的具有低噪声、低功耗、高速度等特性的△-∑模数转换器、采用△-∑技术使其进一步减小了噪声环境的影响,从而成为工业和过程控制应用中的理想选择。此外,在系统中采用LTC2408能使系统设计者获得很高的分辨率,因为LTC2408的噪声性能比积分型模数转换器更好得多。它可直接接收来自传感器的输入信号,适合于测量
[模拟电子]
STM32CUBEMX开发GD32F303(11)----ADC在DMA模式下扫描多个通道
概述 本章STM32CUBEMX配置STM32F103,并且在GD32F303中进行开发,同时通过GD32303C_START开发板内进行验证。 需要GD样片的可以加Q_QUN申请:6_15061293。 本章主要配置,双ADC轮询模式扫描多个通道,通过串口进行打印。 查阅手册可以得知,PA9、PA10为串口0的输出和输入口。 ADC通道配置 生成例程 这里准备了GD32303C_START开发板进行验证。 视频教学 https://www.bilibili.com/video/BV1hG41187Ah/ STM32CUBEMX配置 勾选中断。 ADC1配置。 ADCs_Common_Setti
[单片机]
STM32CUBEMX开发GD32F303(11)----<font color='red'>ADC</font>在DMA模式下扫描多个通道
C8051F020的ADC0
与其它逐次逼近式的AD操作类似,有几个点需要主要:1.有8个通道,内部还有一个通道用于测温;2.内部可产生一个1.2V电压基准,并能x2输出到Vref,但必须接到Vref0上,当然也可以外接基准电压;3.有低功耗跟踪方式可供选择;4.内部有运放增益,对微弱信号特别有效 一般采用向ADBUSY写1的方式进行转换,以下是读取AD值的函数: uint GetAD0value(uchar channel)//0~7对应AIN0~7,8是温度传感器 {//AD采样 uint ad0_value; AMX0SL=channel; AD0INT=0; AD0BUSY=1;//启动AD转换 while(!AD0INT)
[单片机]
ATmega8 ADC噪声抑制模式
当SM2..0 为001 时, SLEEP 指令将使MCU 进入噪声抑制模式。在此模式下,CPU 停 止运行,而ADC、外部中断、两线接口地址配置、定时器/ 计数器2 和看门狗继续工作。 这个睡眠模式只停止了clkI/O、clkCPU 和clkFLASH,其他时钟则继续工作。 此模式提高了ADC 的噪声环境,使得转换精度更高。ADC 使能的时候,进入此模式将 自动启动一次AD 转换。ADC 转换结束中断、外部复位、看门狗复位、BOD 复位、两线 接口地址匹配中断、定时器/ 计数器2 中断、SPM/EEPROM 准备好中断、外部电平中断 INT0 或INT1,或外部中断INT2 可以将MCU 从ADC 噪声抑制模式唤醒。
[单片机]
富士通半导体推出CMOS 转换器解决方案系列之首款28nm ADC 产品
上海,2013年3月18日 –富士通半导体(上海)有限公司今日宣布,高速数据转换器的市场领军供应商富士通半导体欧洲(FSEU)在高速ADC上取得最新突破,这将使得在世界范围内大规模部署单波长100Gbps的光传输系统成为可能。结合富士通在混合信号设计、热设计、功耗优化及高性能封装设计上的专长,可为系统设备商提供基于此ADC的完整SoC ASIC解决方案,在持续增大的带宽和传输流量需求下为全球网络基础设施的亟待升级铺平道路。 对带宽的需求将会使得对100Gbps网络的应用从广域网(数千公里传输距离)扩大到城域网(MAN)领域。城域网的覆盖距离较广域网短,最多几百公里,但其端口密度会更高,因此受机械和散热的制约,要求100Gbps
[模拟电子]
富士通半导体推出CMOS 转换器解决方案系列之首款28nm <font color='red'>ADC</font> 产品
ADC输出转换采样生成FFT图详解
您可以通过周期性地收集大量的 ADC 输出转换采样来生成 FFT 图。一般而言,ADC 厂商们将一种单音、满量程模拟输入信号用于其产品说明书的典型性能曲线。您从这些转换获得数据,然后绘制出一幅与图 1 相似的图。该图的频率标度始终为线性,从零到 1/2 转换器采样频率。      图 1 FFT 图中 12 位转换器共有 4096 个数据集。   通过将一个 100ksps 的采样频率应用到一个 9.9 kHz 模拟输入信号的12 位 ADC,您可以得到图1中的FFT图。9.9 kHz 下的信号便为基本输入信号 (A)。该基本输入信号寄生接近于 0 dB。   FFT 图中4条规范包括基本输入信号、信噪比、总谐波失真和平
[模拟电子]
<font color='red'>ADC</font>输出转换采样生成FFT图详解
适用于流水线ADC的高性能采样/保持电路
介绍了一种利用双采样技术的高性能采样/保持 电路 结构, 电路 应用于10bits50MS/s流水线ADC设计中。电路结构主要包含了增益自举运算放大电路和栅压自举 开关 电路。增益自举运算放大电路给采样/保持电路带来较高的增益和带宽,栅压自举 开关 电路克服了多种对开关不利的影响。设计还采用了双采样技术,使采样/保持速率大大提高。设计在SMIC 0.18um工艺下实现,工作电压为1.8V,通过仿真验证。本文设计的采样/保持电路可以适用于高速高精度流水线ADC中。 1 引言 随着现代 电子 技术迅猛发展, 电子 产业逐步形成了以数字为主的格局。数字信号处理 技术日渐成熟的同时, 对 模拟 信号和数字信号的转换 接口 电路模数转换
[电源管理]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved