简易数字存储示波器的设计

发布者:zdf1966最新更新时间:2019-10-29 来源: 21ic关键字:示波器  单片机  数据采集和存储  MS12864R 手机看文章 扫描二维码
随时随地手机看文章

传统意义上的模拟示波器虽然功能较全,但是价格昂贵,体积大、重量重、成本高、等一系列问题使应用受到了限制。对于大多数学生以及教学组织来说,利用示波器主要是进行一些理论性的测试与实验,高精度高成本示波器的作用不是很必要,为此,笔者提出了一种便携式数字存储示波器的设计,它采用了LCD显示、高速A/D采集与转换、FIFO以及单片机等技术,具有较强的实用性以及发展的市场潜力,前景可观。

1 简易数字示波器的工作原理以及总体框架
本设计硬件电路部分由单片机控制系统电路,前向输入调理电路,模数转换和存储电路,以及按键显示电路组成。其工作的基本思路就是以单片机为控制核心,让AD芯片完成数据的离散化,采集数据经过缓冲暂存于存储器里面,当波形显示时,单片机从存储器的读使能端读取采集数据存于数组中,然后进行相应的数据处理并把所存取得数据按一定的顺序打在液晶显示器相应的位置上,从而再现波形信号;其中输入调理电路由阻抗变换电路,信号抬升电路以及频率测量电路构成,阻抗变换电路是为了提高输入阻抗,信号抬升是为了使信号的幅度满足AD芯片的输入幅度要求,频率测量电路主要是测量周期性信号的频率。总体设计框图如图1所示。

a.jpg



2 硬件设计
2.1 前端信号的处理
本模块具有两大功能,一是输入信号位置的变换;二是信号波形的变换。
信号位置的变换主要由阻抗变换电路,信号抬升电路构成,阻抗变换采用ua741构建的阻随放大电路,信号抬升电路采用ua741构成的加法电路,信号位置的处理主要是对被测输入信号在幅度与偏移方面进行线性处理,使信号在垂直方向上处于A/D转换器的输入范围内。波形变换电路是用来测量输入信号的频率,但是单片机属于数字器件,为此,我们需要对输入信号进行波形变换以及脉冲整形;硬件电路设计如图2所示。

b.jpg


2.2 信号的采集与存储
数据采集部分㈣是本设计的核心部分,本设计采用BB公司的8位AD,试验中让AD完成数据采集,采集完数据送往FIFO,通过FIFO中继再送往单片机,FIFO是一种双口RAM,它没有地址线,随着写入数据或者读取数据而使地址指针进行递增或者递减来实现寻址,两者中间接了一个缓冲器,这样可以起到数据缓冲作用,在MCU与AD之间接入FIFO的作用是起到数据缓冲的作用,因为AD的时钟高于MCU的工作频率,所以让AD和FIFO同步工作来存储AD转换的输出数据,实验中AD与FIFO的时钟同步,来自于ALE引脚,为了使时钟更加稳定,可以让ALE信号先经过与门再送往采集存储模块;FIFO有3个标志位引脚,FF满标志,HF半满标志以及EF空标志,本设计只利用了FF满标志,当FIFO存满时通知单片机来读取数据,这是单片机使FIFO的写使能禁止,只来读取数据以显示,硬件电路设计如图3所示。

c.jpg


2.3 液晶显示
试验中波形的显示是借助Ms12864R,采用8位并行数据处理,利用了液晶的打点功能,数据采集的先后顺序体现在液晶的横轴上面,也就是波形显示的时间先后,而数据值的大小则体现在液晶的纵轴上面,也就是波形的幅度体现。

e.jpg


由于采用FIFO,所以先采样的点后显示,这是波形显示的核心,如图4所示。12864主要有4个编程端口,RS(数据命令选择),RW(读写选择),EN(使能端)以及PSB(串并选择),电路连接中分别接到单片机的某一I/O口上。
2.4 按键电路
本设计需要按键较少,因为设计要求X方向能够设置10us/div,20us/div,40us/div三档水平扫描速度,Y方向能够设置0.5V/div、1V/div二档垂直灵敏度,加之幅度和频率的测量,所以本设计要6个独立按键就够了。

3 软件部分
3.1 总体程序框图
总体程序框图如图5所示。

d.jpg


3.2 测量频率流程图
测量频率流程图如图6所示。本设计频率测量是基于计数法和测周期法混合使用。其基本思想就是先测量1 s内被测信号的上升沿个数,来一个上升沿计数器加1,为了防止计数器产生溢出,设计中将1 s分成20个50 ms,中断20次,测出信号频率,如果频率值小于1K,则改用测周期法。

f.jpg


3.3 液晶打点流程图
打点操作是作图的基础,由于st7920控制器的绘图RAM是一次进行两个2个字节的数据的读写操作,也就是一次修改的是16个点的状态,而我们要想只修改一个点的状态同时不改变其余相邻15个点的状态,那只能是先把原来位置的16个点的状态读出,使用位操作指令修改其中一个点的状态,然后在回写到RAM中。整体的过程即是:读取-修改(位状态)-写入。液晶画点是编程的难点与重点,需要把液晶纵向每隔转换为电压,要把水平方向转化为时间,将波形显示出来,其步骤如下:先确定打点的位置;其次读出该点所在的数据值;接着修改该点相应的位的值,对于单色液晶来说,只有两种操作,一是点亮该点,另一种是熄灭该点;最后将修改后的数据值写入对应的地址。打点流程图如图7。

g.jpg


3.4 测试结果
波形测试结果(波形之一,其他略)频率幅度测试结果如表1所示。

h.jpg



4 结束语
本系统按照功能全面,指标合理,总体价格低廉的要求设计了硬件电路,充分地利用了单片机的I/O接口,使之成功地实现了频率的测量,信号幅度的测量,以及不同灵敏度波形的显示。而且幅度频率测量误差较小,显示波形没有明显的失真,满足设计要求。如果利用高端控制器,则可以实现高精度的测量,前景远大,很有研究价值。


关键字:示波器  单片机  数据采集和存储  MS12864R 引用地址:简易数字存储示波器的设计

上一篇:基于FPGA的手持式示波器设计
下一篇:基于SIGLENT示波器、信号源、电源的SCPI探索及应用

推荐阅读最新更新时间:2024-11-02 14:03

开发设计单片机应用系统应注意的问题
作为一名电子产品的专业设计人员来讲,开发和设计单片机应用系统除考虑电磁干扰问题之外,还应考虑如下问题: 1.注意低功耗设计 目前,绿色、环保、节能等词汇越来越频繁地出现在人们的生活中,连GDP都有绿色GDP。对于每个电子产品的设计者来说,都不能不考虑产品的低功耗设计问题。众所周知,各种电子产品的供电方式有两种:一种是电池供电系统;另一种是交流供电系统。对于电池供电系统来说,为了延长电池的使用寿命,必须降低整个系统的功耗。如手机,每隔3-6天就要充电,笔记本电脑充满电最长时间能用7-8小时,最短时间的只能用1-2小时左右。对于交流供电系统来说,虽然没有充电的限制,也是功耗越低越好。两件产品功能相同,但耗电不同,肯定是功耗低者更有竞争
[单片机]
Microchip推出全新功能安全型AVR® DA系列单片机
随着物联网(IoT)为工业和家庭应用提供更强的连接性,以及车联网提升了驾驶室和操控功能,业界需要更高性能的单片机来实现更好的实时控制以及增强的人机接口应用。Microchip Technology Inc.(美国微芯科技公司)今日宣布推出下一代AVR® DA系列单片机(MCU),是其首款带有外设触摸控制器(PTC)的功能安全型AVR MCU系列。 Microchip 8位单片机事业部助理营销副总裁Greg Robinson表示:“新推出的AVR DA单片机系列继承了Microchip高性能和高代码效率器件的优势,通过搭载先进模拟和独立于内核的外设,以及比现有器件更多的电容式触摸通道,满足了多个行业的新需求。新的单片机系列
[单片机]
Microchip推出全新功能安全型AVR® DA系列<font color='red'>单片机</font>
示波器判断显卡BIOS是否正常
正常时,用示波器测量其CS脚,应该有两次波形,说明GPU选中ROM,ROM返回数据。 如果没有波形,在以上供电和时钟,以及C、A、D线二极体值都正常的情况下,说明GPU坏。 如果有一次波形,说明GPU已经选中BIOS,BIOS未能正常返回数据,此时要么是BIOS有问题,要么就是GPU坏。
[测试测量]
用<font color='red'>示波器</font>判断显卡BIOS是否正常
一种廉价的单片机交流电力线的接口方案
  由美国MicroChip公司推出的PIC系列单片机以其极其优异的性价比在我国乃至全球的自动控制领域得到了广泛的应用。PIC系列单片机的不同型号具有不同的特性 , 如自带模拟电压比较器的PIC16C62X系列、自带八位模数转换的PIC16C7X系列以及内置FlashEEPROM的 PIC16C8X系列等,这些内置功能在系统要求不是非常高的情况下能以极低的成本取得很好的工作效果。这对于提高产品,尤其是家用电器产品的性价比是十分重要且是必须的。如何充分利用好单片机的这些特性来提高系统的性价比就是当前值得我们注意的一个方面。本文就尝试通过对PIC单片机I/O口的保护电路进行分析,介绍一种廉价的单片机与交流电力线的接口方案。   以往,我
[单片机]
让您的示波器测量质量提升 1000 倍的绝招
您是否希望示波器测量尽可能最好?不要满足于普通的测量;只需正确选择信号的显示刻度,即可显著提升测量质量。为什么? 因为示波器的采样率和分辨率在测量中同样重要。 采样率受示波器水平刻度的影响。其公式为: 采样率 = 存储深度/采集时间长度 存储深度是一个恒定值,采集时间长度(或迹线长度)是一个变量,取决于您的每格时间设置。随着时间/格设定值增加,采集时间长度增加。由于这一切都必须适应示波器的存储深度,在某一点上,示波器的 ADC 将不得不降低采样率。这实际上意味着什么?我们以 100 kHz 方波的频率测量为例。我们知道频率为 100 kHz 且非常稳定,因此我们可以利用测量结果的标准方差来判断测量的质量。图 1 将 100 kH
[测试测量]
让您的<font color='red'>示波器</font>测量质量提升 1000 倍的绝招
示波器调试经验
在调试过程中,往往需要选择合适带宽的示波器来进行测量,否则你根本就不能判断你的硬件是否有问题。原因是很简单的,即使你的硬件是没问题的,但是由于你的测试方法导致了错误的结果,使得你误判为硬件的问题,这样的话,你永远只能原地打转,终究是解决不了问题的。 下面就说说自己的感受吧,以前都是用泰克1G 带宽、6GSa/s的示波器进行测试的,这几天示波器被别人借走了,所以只能找另一个示波器来代替了,问题就来了,首先我需要知道我测量的信号的上升时间是多少呢,我需要选择多少带宽的示波器呢。 我测量的信号是一个窄脉冲,上升时间的要求1ns即可,脉冲宽度为10ns左右 BW = 0.35 / Tr 式中 BW 表示带宽(GHz),Tr 表示信号的
[测试测量]
<font color='red'>示波器</font>调试经验
TI 54xxDSP与51单片机的接口技术
摘要:TI的54xxDSP是一种定点DSP系列芯片,产生应用于各种信号处理系统,特别是语音信号处理系统。在这些系统中,通常由两部分组成。一部分为DSP子系统,这是整个系统的核心,主要完成采样、数字信号处理以及输出等功能;另一部分为单片机子系统,进行交互界面的控制,如键盘和显示。两个子系统不是各自孤立的,需要进行必要的数据交换。本文主要讨论DSP和51单片机之间通过HPI接口进行连接的设计方法,给出硬件连接以及软件编程方法。 关键词:DSP HPI 单片机 TMS320C54xx是TI公司针对音频信号处理领域推出的一种定点DSP系列芯片,已经在很多语音信号处理系统中得到了广泛的应用。在这些系统中,通常包含DSP和单片机两个子系
[嵌入式]
NXP全新i.MX RT700跨界MCU搭载eIQ Neutron NPU, 以高性能、低功耗赋能AI边缘
高度集成的全新i.MX RT700跨界MCU旨在显著节省功耗,配备eIQ Neutron神经处理单元(NPU),可在边缘端提供高达172倍的AI加速 中国上海——2024年9月24日—— 恩智浦半导体(NXP Semiconductors N.V.,)今日宣布推出全新i.MX RT700 跨界MCU系列,旨在为支持智能 AI 的边缘端设备赋能,例如可穿戴设备、消费医疗设备、智能家居设备和 HMI 平台 。i.MX RT700 系列为边缘 AI 计算的新时代提供了高性能、广泛集成、先进功能和能效的优化组合。 i.MX RT700 在单个设备中配备多达五个强大的内核,包括在跨界 MCU 中 首次集成eIQ® Neutr
[嵌入式]
NXP全新i.MX RT700跨界<font color='red'>MCU</font>搭载eIQ Neutron NPU,  以高性能、低功耗赋能AI边缘
小广播
最新测试测量文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved