随着电力网络的扩大复杂化和区域互联趋势的到来,电力系统的行为也将越来越复杂。一些原有的假设条件和简化模型的适用性都将接受进一步的挑战与检验。在此情况下丰富详尽的现场实测数据,尤其是故障或非正常状态下的数据。无疑将具有越来越重要的价值。它们不仅是分析故障原因检验继电保护动作行为的依据,也为电力工作者研究了解复杂系统的真实行为,发现其规律提供宝贵的资料,这种电力信号实时分析仪可以实时监测各种有用信息,电力系统也对其提出了更高的要求,而计算机技术的不断突飞猛进,也为这种光纤信号分析仪的采样速率、分析、处理、显示能力提供保证,为提高监控可靠性、准确性、灵活性、实时性以及信息资源共享提供了充分的条件。
目前,IEC61850标准的制定及其内容已超变电站自动化系统的范围,扩展到其他工业控制领域,成为基于通用网络通信平台的工业控制的国际标准。国内外很多电力设备生产商都在围绕IEC61850开展研究和应用工作,并提出IEC61850的发展方向是实现“即插即用”,在工业控制通信上实现“一个世界、一种技术、一个标准”。
1 系统构成及要求
结合一些与该设计方案关于示波器仪表类似的优秀文章,并取其精华作为设计参考。该光纤信号分析仪主要由三部分组成,包括:接口部分、A/D采集控制部分和显示控制部分,如图1所示。其中每个模块都实现各自的功能,具有良好的可移植性。
为了达到系统设计的要求,信号分析仪还需具有以下功能:
(1)光电转换模块将来自不同光接口的光纤信号转换为与光强成正比的电信号,完成1EC61850规定的9-1,9-2,GOOSE格式光信号的接入和转发、IEC60044-7/8规定的FT3格式光信号的接入和转发以及专用采集器光纤信号的接入,而且信号转换误差和测量范围满足一定精度要求。其光信号频率范围为125MBit/s,光电、电光转换误差精度为2%左右为宜。
(2)A/D采集控制部分实现满足一定精度要求、具有足够采样速率的电信号瞬时值采集、储存、显示、分析。波形分析则主要围绕波形质量和信号特征进行,可能包括“1”状态光电平数值,光信号的上升时间、下降时间,光信号的过冲,光信号的稳定时间,光信号频率等内容。由于需要与光纤信号的速度配套,其采样带宽与光信号的带宽需配合良好;如可能的情况下,采样速率应大于光信号速率的50倍,也可根据实际情况确定;而在A/D转换精度方面优先采用10位的A/D,有困难时考虑8位A/D。
(3)显示控制部分主要实现IEC 61850规约对GOOSE、9-1、9-2格式的通信方案和要求对其进行信息解码、信息组储存、信息组识别、报文信息显示功能等;IEC60044-7/8对FT3格式(曼彻斯特码)的要求对其进行信息解码、信息组识别、信息组储存、信息显示功能。实现满足IEC 61850规约的MMS报文信息解码、信息组储存、信息组识别、报文信息显示等功能。规约分析单元实现对上述报文的解析、注释、信息计算等功能;还需具有一定容量的波形存储能力和一定容量的报文信息储存能力。最终通过液晶屏幕显示出来,并提供一个人性化、可视效果好、可操作性好的人机交互界面。
另外,仪器接入测量信号时不会影响系统的正常工作,具有在线监测功能,光纤信号分析仪接线示意图如图2所示。
除了满足上述要求外,该分析仪还具有很好的信息存储能力及后台分析能力。能实时保存报文信息,保存的帧信息中包含全部的帧信息,包括报文头、添加字节、CRC校验码等数字信息,以便进行后续分析。
关键字:ARM FPGA 电力光纤信号分析仪
引用地址:
基于ARM和FPGA的电力光纤信号分析仪的设计
推荐阅读最新更新时间:2024-11-17 06:06
Altera宣布可立即提供下一代非易失MAX 10 FPGA和评估套件
MAX 10 FPGA集成了双配置闪存、模拟和嵌入式处理功能,提高了系统价值。 2014年10月8号,北京——Altera公司(NASDAQ: ALTR)今天宣布开始提供非易失MAX® 10 FPGA,这是Altera第10代系列产品中的最新型号。使用TSMC的55 nm嵌入式闪存工艺技术,MAX 10 FPGA这一革命性的非易失FPGA在小外形封装、低成本和瞬时接通可编程逻辑器件封装中包含了双配置闪存、模拟和嵌入式处理功能。MAX 10 FPGA现在已经开始发售,由多种设计解决方案提供支持,这些方案加速了系统开发,包括Quartus® II软件、评估套件、设计实例,以及通过Altera设计服务网络(DSN)提供的
[嵌入式]
MCS-51单片机与CPLD/FPGA接口逻辑设计
在功能上,单片机与大规模CPLD有很强的互补性。单片机具有性能价格比高、功能灵活、易于人机对话、良好的数据处理能力潍点;CPLD/FPGA则具有高速、高可靠以及开发便捷、规范等优点。以此两类器件相结合的电路结构在许多高性能仪器仪表和电子产品中仍将被广泛应用。本文就单片机与CPLD/FPGA的接口方式作一简单介绍,希望对从事单片机和CPLD/FPGA研发的朋友能有所启发。 单片机与CPLD/FPGA的接口方式一般有两种,即总线方式与独立方式,分别说明如下: 一、总线方式 单片机以总线方式与CPLD/FPGA进行数据与控制信息通信有许多优点。 (1)速度快。如图一所示,其通信工作时序是纯硬件行为,对于MCS-51单片机,只需一条单字节
[应用]
ARM2440换lcd
将原来的3.5寸分辨率为240x320换为480x272所需要修改的地方 时序设置: CLKVAL=4 (VCLK =10) 5 VCLK 12 每个点扫描周期 VSPW = 10-1 2 tvp - typ:10 垂直方向的同步信号 VBPD=2-1 2 tvb - typ:2 垂直同步信号后多长时间工作 LINEVAL=272-1 tvd :272 272行 VFPD=2-1 2 tvf - type:2 这扫描一帧后间隔多少时间发同步信号 HSPW=
[单片机]
基于USB的高精度多通道数据采集卡设计
在电子测量中,不仅需要对多路信号进行高精度的采集和预处理,而且要将其快速地传送到计算机,以便于对测量的监测。文中选用ADS8364来进行多通道信号采集,通过CY7C68013芯片采用USB2.O协议进行数据的快速传输。 1 多通道,高精度的A/D转换 ADS8364是美国TI公司生产的高速、低功耗,6通道同步采样16位模数转换器。ADS8364采用+5 V工作电压,并带有80 dB共模抑制的全差分输入通道以及6个4μs连续近似的模数转换器、6个差分采样放大器。 当ADS8364采用5 MHz的外部时钟来控制转换时,它的取样率是250 kHz,同时对应于4μs的最大吞吐率,这样,采样和转换共需花费20个时钟周期。另外,
[测试测量]
SDRAM文件结构存储控制的FPGA实现
O 引言 面对不同的应用场景,原始采样数据可能包含多种不同样式的信号,这给传统基于连续存储方式的数据缓存系统带来了挑战。除此之外,由于对不同信号的处理往往需要不同的数据帧结构,缓存系统的设计需要保存原始采样数据并能够实现数据的重组帧,以满足不同处理需求。针对以上问题,本文提出了一种基于文件结构存储方式的数据缓存系统,该系统利用FPGA设计结构化状态机实现对SDRAM的控制,完成了对数据的缓存与重组帧,具有速度快、可靠性高、灵活性强和功能可扩展等优点。 1 系统总体设计 在系统设计上,采样的数据都会采用数据帧结构,一般的设计大多是基于帧头加数据的格式。在帧头中包含一些数据的特征信息,其中最常见的有数据到达时间和数据结束时间
[工业控制]
英特尔加紧收购挑战ARM
8月底英特尔连续启动两笔收购案,78亿美元收购杀毒软件厂商McAfee,19亿美元收购德国芯片巨头英飞凌的手机芯片部门,外界普遍认为这是英特尔入侵移动计算领域的再一次尝试,英特尔在手机芯片领域最大的竞争对手是英国ARM公司,目前市面上95%以上的智能手机使用ARM架构的处理器,此外包括iPad在内的已上市和规划中绝大部分平板电脑也会使用ARM架构的处理器。打败ARM意味着得到一个预计规模100亿美元的市场。
总部在英国剑桥的ARM,前身是Acorn Computer,1985年第一个ARM处理器ARM1诞生,次年又推出了ARM2。ARM2具有32位资料总线、26位寻址空间,采用了精简指令集(RISC,Redu
[单片机]
基于DSP和FPGA的磁浮列车同步485通信方式
在高速磁浮交通系统中,车载测速定位单元对车辆的位置和速度进行实时测量,并将位置和速度信号通过无线电系统传送至地面上的牵引控制系统和运行控制系统,以用于长定子直线同步电机牵引的反馈控制,以及车辆运行的指挥和安全防护。测速定位单元是牵引和运控系统闭环控制的核心与关键。 测速定位单元紧邻悬浮电磁铁及长定子绕组和铁心,处于悬浮磁场和牵引磁场中,电磁环境非常复杂,这对其通信设备的电磁兼容性能提出了很高的要求。另外,为满足牵引控制系统的需求,测速定位信号的精度要求相当高。因此,测速定位信号传输的速度、实时性及可靠性都面临挑战。基于以上考虑,本文提出了基于DSP和FPGA的磁浮列车同步485通信方式的研究,以解决上述挑战。 同步485的实现
[汽车电子]