无源探头为何适合带宽在50MHz以下测量应用

发布者:星尘之泪最新更新时间:2020-01-31 来源: eefocus关键字:无源探头  带宽  50MHz 手机看文章 扫描二维码
随时随地手机看文章

为什么使用有源探头?

无源探头非常适合带宽在 50 MHz 以下的测量应用。这是因为无源探头的输入电容在 9 或 10 皮法 (pF) 范围内。这样可以加载受测试器件。这些负载效应随着频率提高而增加。为了避免这种负载效应,有源探头在无源探头的补偿衰减器和示波器输入之间插入了一个放大器(图 1)。


该放大器对连接电缆进行缓冲,让电缆能够端接到标称值为 50 Ω 的特征阻抗。这样可将探头与电缆的容性负载和示波器的输入电路隔离开。该放大器旨在最大程度减小输入电容,标称值为 4 pF。而补偿衰减器进一步减小了此电容。为实现 10:1 衰减,预期的输入电容约为 0.4 pF。但是,输入保护电路和探头尖端五金额外增加了电容。


Teledyne LeCroy ZS1000 1 GHz 单端有源探头是典型的有源探头,具有 0.9 pF 的输入电容和 1 MΩ 的输入电阻。

高阻抗无源探头的简化原理图

图 1:高阻抗无源探头和单端有源探头的简化原理图,放大器对连接电缆和示波器输入进行缓冲,同时提供低输入电容。(图片来源:Digi-Key Electronics)


低输入电容扩大了有源探头的有用频率范围。在图 2 中可以看到这一点,该图将 10:1 高阻抗无源探头的输入阻抗与 ZS1000 的输入阻抗进行了比较。

以频率为自变量的输入阻抗函数曲线

图 2:高阻抗无源探头和 ZS1000 单端有源探头的频率输入阻抗函数曲线。(图片来源:Digi-Key Electronics)


相比无源探头的 10 MΩ 输入阻抗和 9.·5 pF 输入电容,ZS1000 的输入阻抗为 1 MΩ,输入电容为 0.9 pF。在高于 20 kHz 的频率下,ZS1000 的输入阻抗高得多,因而信号负载较小。在 500 MHz 的频率下,ZS1000 的输入阻抗为 354 Ω,而无源探头的输入阻抗则为 34 Ω。


也许最好的比较方式是查看不同探头对快速边沿的响应差异(图 3)。

Teledyne LeCroy 示波器对快速边沿的响应曲线图(单击查看全尺寸图片)

图 3:使用 50 Ω 直接连接、无源探头、ZS 系列有源探头时,示波器对快速边沿的响应。(图片来源:Teledyne LeCroy)


50 Ω 直接连接的响应被用作参考波形。有源探头响应与参考波形几乎无法区分。由于输入电容较高,无源探头响应有圆角。注意测量的上升时间。参考波形的上升时间(参数读数 P1)为 456 皮秒 (ps),有源探头 (P2) 的上升时间则为 492 皮秒。无源探头的上升时间 (P3) 为 1.8 纳秒 (ns)。


在带宽相同的情况下,有源探头的性能通常优于无源探头。但还必须记住,有源探头需要电源。由于这个原因,有源探头几乎针对不同制造商的示波器均提供了专用连接器。对于 ZS1000 有源探头,它配备了 Teledyne LeCroy ProBus 接口,用于从示波器为探头供电。该接口让探头与示波器连为一体,因而示波器的前面板可以感应和完全控制探头。 


与无源探头相比,有源探头的输入电压范围也比较小。对这一点需要特别注意,以防止损坏探头。ZS1000 探头的输入电压范围为 ±8 伏特,最大无损电压为 20 伏特。此电压范围大于当前使用的任何逻辑电平的电压需求,因而这些探头非常适用于高速逻辑测量。

探头配件

ZS1000 探头附带了多种配件(图 4)。请注意,大多数探头尖端和接地引线非常小。物理尺寸较小意味着电容和电感较低,这意味着受测试电路的负载较小。较长的接地引线和微型夹适用于低频应用,它们增加的电抗并不会影响测量。

Teledyne LeCroy ZS1000 1 GHz 有源探头配件的图片(单击查看全尺寸图片)

图 4:ZS1000 1 GHz 有源探头附带了大量配件,包括适用于低频信号的长接地引线,还有各种尖端,它们让用户能够更容易对测试点进行操作。(图片来源:Teledyne LeCroy)

标准探头尖端是针对常规探测而设计的。弹针式尖端和接地引线提供了垂直顺性,确保了有效接触,而不产生不适当的机械压力。除了在最尖端处之处,IC 尖端是绝缘的,旨在防止相邻的 IC 引脚意外短路。弯曲尖端非常适合在相邻元器件下方进行探测,适用于探头必须与板保持平行的应用。方针适配器传送信号和接地引线,采用标准的 2.54 mm 引脚间距。


接地引线包括窄型和宽型接地片。接地片具有低电感接地连接的优点。它们通常与铜垫配合使用。铜垫背侧具有粘性,粘贴到 IC 上。然后,它可以直接焊接到 IC 接地引线,提供接地电感很低的连接。偏移接地的目的是连接到探头接地插座并环绕探头。这使探头尖端和接地都能保持小间距,同时让接地引线非常短。

差分探头

差分探头可测量两个输入端之间的电压差。单端探头可测量单个点和地面之间的电压,而差分探头无需接地即可测量两个输入端之间的电压。当需要在不以地面为基准的开关模式电源中的线路端电路上进行测量时,这是非常有用的。


由于差分探头测量两个输入端之间的差值,因此两个输入端共同的信号,称为共模信号,将被抵消或幅度显著减小。这意味着两个输入端共同的偏置电平、噪声、串扰可能被抵消,至少幅度会显著减小。


下面显示了差分探头的概念框图(图 5)。图中包括一个受测试器件,模型为差分源,具有共模元件。

差分探头的概念图图片

图 5:差分探头与受测器件概念图,其中受测器件模型化为具有共模元件的差分源。(图片来源:Digi-Key Electronics)


差分探头的核心元件是差分放大器。差分放大器输出是 + 和 – 输入端之差。在差分放大器前面,电路看起来像是两个单端有源探头。如图所示,差分探头输入端连接到通用差分源,包括两个差分元件 Vp 和 Vn,还有一个共模源Vcom。


理想的差分探头的工作方式如下:上方 (+) 探头输入端的电压为 Vp + Vcom。下方 (-) 探头输入端的电压为 – Vn + Vcom。将这些输入施加到差分放大器上,会产生 Vp+Vn 的输出,假定单位增益。共模信号现已消除。


共模信号在差分探头中衰减的程度取决于共模抑制比 (CMRR)。CMRR 是差分探头的差分增益与共模增益的功率比,以分贝 (dB) 表示。CMRR 通常取决于频率,随着频率提高而降低,且通常指定为多个频率。


Teledyne LeCroy ZD1000 探头就是一例 1 GHz 带宽差分探头,差分输入范围为 ±8 伏特,在 60 Hz 频率下 CMRR 为 60 dB(图 6)。该探头旨在用于 Teledyne LeCroy 示波器。其差分输入电阻为 120 kΩ,差分输入电容小于 1 pF。

Teledyne LeCroy ZD1000 差分探头图片

图 6:使用小型 IC 适配器的 ZD1000 差分探头。这些探头尖端一侧有绝缘,以防止与相邻 IC 引脚短路。它们还具有低电感电阻补偿,以减少电感峰值。(图片来源:Teledyne LeCroy)

ZD1000 还包括多个探头尖端适配器,以满足很多探测应用的需求。要记住,差分探头的探测配置应该是对称的,两个输入端都使用相同的适配器,以达到尽可能最好的 CMRR。

高电压差分探头

差分探头的关键优点是输入不以地面为基准,具有衰减共模信号的能力。在测试开关模式电源器件时,这些特性也可能是非常有用的,在这种情况下,线路侧不以地面为基准。高压差分探头,例如 Teledyne LeCroy HVD3106,适用于此类应用(图 7)。

Teledyne LeCroy HVD3106 探头图片

图 7:Teledyne LeCroy HVD3106 探头和相关配件的设计目的是按照 IEC/EN 61010-31:2015 标准进行安全的高压探测。(图片来源:Teledyne LeCroy)

该探头的最大差分电压为 1500 伏特。实现如此宽的电压范围的方法是在差分放大器前面使用 500:1 衰减。在 60 Hz 的频率下,探头的 CMRR 为 85 dB。此外,探头及其配件的物理配置的目的是小心探测高电压,安全等级符合 IEC/EN 61010-31:2015 标准。 

结论

有源探头具有增加带宽和降低探头负载的优点。差分探头的价值在于增加地面隔离能力,减少共模信号。而专有接口可将这些探头完全集成到示波器用户接口中,使得安装和操作更加简单。

关键字:无源探头  带宽  50MHz 引用地址:无源探头为何适合带宽在50MHz以下测量应用

上一篇:示波器怎么用才对?资深工程师也会忽略这些细节……
下一篇:基于ROM的任意波形发生器(DDS)

推荐阅读最新更新时间:2024-11-17 17:33

示波器探头补偿
作为一名电气狗,平日里少不了的就是和示波器打交道。用到最多的就是文章一开始的图中所示的无源示波器探头。平日里觉得这个东西平淡无奇,就是一根连接到示波器的线嘛,直接用就完了。直到今天上课的时候老师讲课的最后提到一句示波器探头的电容补偿的时候勾起了我的兴趣,下课查阅资料才知道原来探头其实大有文章,写在这里跟大家分享。 示波器探头补偿原理 示波器输入电阻 首先,示波器探头无法就是将电路信号送入示波器,似乎直接连起来就能搞定了。如下图所示 但是我们使用万用表测量示波器探头两端的电阻 万用表测量探头两端电阻,图片来自网络,侵删 啥?居然有9M这么多,而我们来看示波器,细心的朋友们一定发现在示波器的输入接口旁边一般都标记有 的对
[测试测量]
示波器<font color='red'>无</font><font color='red'>源</font><font color='red'>探头</font>补偿
泰克示波器的带宽介绍
大家都知道,示波器被誉为电子工程师的眼睛,那么带宽就是示波器技术指标的重中之重,也是示波器最昂贵的指标,那么什么是泰克示波器的带宽呢? 说到示波器的带宽,一般都是指示波器的前端放大器的模拟带宽,当然这是在数字示波器和模拟示波器都是相同的。而放大器相当于示波器的大门,它的带宽就决定了示波器能让什么样的信号进来。 泰克示波器MDO3012 那么示波器的带宽是怎么得到的呢? 我们可以想想一个1V的正弦信号,我们把这个正弦信号输入到示波器中,当随着这个正弦信号的频率增加,示波器的测量到的正弦信号的幅值达到0.707V的时候,我们把此刻正弦信号的频率,定义成示波器的带宽,也就是我们所说的-3dB点,截止频率点(既幅值下降到70.7%
[测试测量]
泰克示波器的<font color='red'>带宽</font>介绍
受光学相干断层成像启发的低带宽雷达技术
近日,以色列特拉维夫大学一项新研究发现,由光学相干断层成像技术(OCT)启发的一个方案,需要很少甚至为零的带宽,就可以准确地创造出雷达周围环境的高分辨率图。 背景 雷达技术一开始是被设计用于识别和追踪空中的军事目标。如今,这项技术更常用于检测机动车辆、天气形成和地质地形。 (图片来源:维基百科) 迄今为止,科学家们相信雷达的准确度和分辨率,与设备使用的频率范围或者无线电带宽相关。 创新 然而,以色列特拉维夫大学(TAU)一项新研究发现,由光学相干断层成像技术(OCT)启发的一个方案,需要很少甚至为零的带宽,就可以准确地创造出雷达周围环境的高分辨率图。 (图片来源:参考资料【2】) 特拉维夫大学电气工程学院教授P
[汽车电子]
受光学相干断层成像启发的低<font color='red'>带宽</font>雷达技术
不要轻易扔掉探头
在当前的高速电路领域中,有源电压探头已经成为连接信号的 必经 工具。有源探头提供了更宽的带宽和更低的电容负荷,成为测量高频信号或高阻抗电路的很好选择。在测量较低频率范围内的频率时,它们通常是首选探头,这也是因为中等带宽示波器标配的无源探头通常性能较差。 泰克公司提供100多种示波器探头和探针,最高带宽达20GHz 但技术发展的步伐永远没有停顿,无源探头技术也不例外。示波器电路内部、探头带宽提高、输入电容以及自动探头补偿技术的发展,这些因素相结合,把传统无源探头的劣势转化成了优势。 在历史上,通用无源探头对坚固耐用的重视要超过对性能的重视。这种矛盾长期来一直存在,因为这些探头
[测试测量]
不要轻易扔掉<font color='red'>无</font><font color='red'>源</font><font color='red'>探头</font>
是德科技推出带宽高达2GHz的小信号测量探头
是德科技公司日前推出业界带宽最高和噪声最低的示波器探头,用于执行电源完整性测量,将直流电源噪声测量精度提升到新的高度。 新款 Keysight N7020A 电源小信号探头针对各种直流电源测量而专门设计,具有极其出色的技术指标,包括极低的噪声、± 24 V 宽偏置范围以及 2 GHz 带宽。 工程师大都在设计具有更低直流工作电压的下一代产品,以期降低功耗并提高时钟和数据速率。由于直流电源的体积不断减小,其容限也变得极为苛刻。数字系统中时钟和数据抖动的主要来源之一,是直流电源噪声。几乎所有电子开发团队都需要测量直流电源的信号完整性,因此要求测量工具能够测量直流电源中微小的变化(通常仅有几 mV)并提供相关信号细节。
[测试测量]
美高森美LiteFast串行通信协议减少客户设计工作和上市时间
致力于在功耗、安全、可靠性和性能方面提供差异化半导体技术方案的领先供应商美高森美公司(Microsemi Corporation,纽约纳斯达克交易所代号:MSCC)宣布提供全新LiteFast解决方案,这是一项专有的轻量、高速、低迟滞、点至点串行通信协议。涵盖多种应用领域的嵌入式系统使用高速串行接口和协议来实现超过1Gbps速率传送数据。LiteFast充分利用SmartFusion 2系统级芯片(SoC)现场可编程逻辑器件(FPGA)、IGLOO 2 FPGA和RTG4 高速信号处理耐辐射FPGA器件中的串行器/解串器(SerDes)收发器模块,简便实施高速串行链接,推动客户减少设计工作和上市时间,而且无需重度的逻辑利用率,极大地
[嵌入式]
仪器带宽对测量结果的影响
工程师们在调试的过程中,会经常发现,同一个信号用不同的设备测试,结果往往会有些差别。到底哪一个结果才是准确的?我们要科学的选用设备进行测试,不要被错误的结果“蒙骗”了。 不同的测试设备都有典型的应用场合和测量范围,之所以会出现测量结果不一致的情况,往往和测试设备本身的参数特性有关系,其中很关键的一个指标就是仪器的带宽。带宽不同的仪器,哪怕测试相同的信号,测试结果往往也都不同。 首先我们来看看仪器测量带宽是什么。仪器的测量带宽简单而言就是仪器能够测试的频率范围,我们将信号幅值衰减到-3dB的频率点称为带宽截止频率点,即在输入某一频率正弦波,测量到的幅度衰减为实际幅度的70.7%时,该频率点称为带宽,如下图所示。 不
[嵌入式]
仪器<font color='red'>带宽</font>对测量结果的影响
示波器探头选择
  在使用 示波器 的过程中,示波器的 探头 选择十分的重要!下面我们就来讨论一下一些常用的示波器探头的类型和使用范围,给大家一些指南,少走一些弯路。   一般的探头分为有源电压探头、无源探头、差分探头、电流探头、低电容探头、高压探头等等。   有源电压探头:一般适用于 带宽 大于500M Hz,幅度小于正负3伏的单端信号。泰克公司的有源电压探头型号有:P7260、P7240、TAP1500等。一些型号可以测量3dB带宽最高可以达到6G。   无源探头:一般用于测试带宽小于500M Hz的单端信号。它是比较经济的一类探头。觉的有:P6139A,规格是:线长是1.3米,带宽500M Hz,系统输入阻抗10M 欧,典型输入
[测试测量]
小广播
最新测试测量文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved