1 引言
随着电子工业的发展,电子元器件急剧增加,电子元器件的适用范围也逐渐广泛起来,在应用中我们常常要测定电容的大小[1]。因此,一种简单、实用的电容测试工具在实际中具有一定的实用价值。一般元件参数的数字化测量是把被测参数转换成频率后再进行测量[2],本设计采用555为核心的振荡电路,将被测电容值转化为频率,并利用AT89S51处理器测量出频率,再通过该频率值计算出电容参数值。
2 系统的原理框图
系统主要采用了555定时器构成的RC振荡电路和单片机技术。设计思路:被测电容C通过RC振荡转换成频率信号f,送入单片机测频,对该频率进行运算处理求出被测电容的值,并送显示器显示。系统框图如图1所示,其主要由测量电路和控制电路两部分组成。当接入被测电容后,由555定时器构成RC振荡器产生方波信号,把此信号通过接口传到AT89C51单片机I/O口上,对此方波信号进行测频,通过软件编程,计算出得到被测电容值,由LCD1602液晶显示。
图1 系统框图
3 硬件设计
3.1 555振荡电路的设计
由555芯片构成的多谐振荡电路如图2,CX为被测电容,接通电源后,CX被充电,A点电压UA上升。当UA上升到时,触发器被复位,同时555芯片内部放电三极管导通,此时U0为低电平。CX通过R2和放电三极管放电,使UA下降。当UA下降到时,触发器又被置位,U0翻转为高电平[3]。CX放电所需的时间为:
图2 555构成的RC振荡电路
由上式可知,当电路设计完成后,振荡器输出f随CX的变化而改变。改变R1、R2的值即可改变系统量程。系统量程分为四档:(1)R1+2R2=470KΩ时,测1.0nF-10.0nF的电容值。(2)R1+2R2=47KΩ时,测10.0nF~100.0nF的电容(3)R1+2R2=4.7KΩ时,测100.0nF~1000.0nF的电容。(4)R1+2R2=470Ω时,测1.0μF~10.0μF的电容。图3为R1+2R2=470KΩ时,测量电容为2μF振荡输出输出波形。
图3 振荡电路输出的频率信号
3.2 信号处理及显示电路
信号处理电路部分采用单片机AT89S51作为系统的主控制器。AT89S51单片机的最小系统由时钟电路、复位电路、外加电源及单片机构成[4],其硬件电路如图4所示。555振荡电路输出的是脉冲波,接到AT89S51处理器的输入引脚P3.5,通过AT89S51内部定时/计时器T0、T1及相应的程序设计,构成一个数字式频率测量系统,测出频率后按(5)式运算处理后得到被测电容值。
图4 单片机控制显示模块
显示模块LCD1602液晶第1、2脚接驱动电源;第三脚VL为液晶的对比度调节,通过在VCC和GND之间接一个10K多圈可调电阻,中间抽头接VL,可实现液晶对比度的调节;液晶的控制线RS、R/W、E分别接单片机的P2.5、P2.6、P2.7;D0~D7为LCD1602液晶模块的8位双向数据口,分别与STC89C52RC单片机的P1.0~P1.7相连,用于传输数据。接在单片机的P0口;BL+、BL-为液晶背光电源[5][6]。
4 系统软件设计
图5 主程序流程图
系统软件环境以Keil4.0为仿真平台,使用C语言编程编写了运行程序;包括主程序模块、显示模块和电容测试模块。软件设计主要包括三个方面:一是初始化系统;二是按键检测;三是数据采集、数据处理并进行显示。程序采用模块化的结构,这样便于调试和修改,易编程和易读性好,也程序结构清楚[7]。系统程序流程如图6所示,首先对P3.5口脉冲信号频率的测量,再通过(5)式算出所测的电容值,由LCD1602显示出来。
5 系统的测试
表1 电容测试数据
6 结束语
设计的电容测试仪硬件采用555定时器作为信号采集模块、AT89S51单片机作为信号处理器模块,软件采用Keil4.0为仿真平台,使用C语言编程编写了运行程序。其具有性能稳定、精度高、操作简单、功耗低等优点。经测试表明:其可以测试1.0nF-10.0uF范围的电容,误差小于0.5%。误差产生主要原因与电路元件参数、测试环境、测试方法等因素有关。
关键字:555定时器 电容测试仪 频率
引用地址:
详解基于555定时器的电容测试仪设计
推荐阅读最新更新时间:2024-10-19 10:29
详解基于555定时器的电容测试仪设计
1 引言 随着电子工业的发展,电子元器件急剧增加,电子元器件的适用范围也逐渐广泛起来,在应用中我们常常要测定电容的大小[1]。因此,一种简单、实用的电容测试工具在实际中具有一定的实用价值。一般元件参数的数字化测量是把被测参数转换成频率后再进行测量[2],本设计采用555为核心的振荡电路,将被测电容值转化为频率,并利用AT89S51处理器测量出频率,再通过该频率值计算出电容参数值。 2 系统的原理框图 系统主要采用了555定时器构成的RC振荡电路和单片机技术。设计思路:被测电容C通过RC振荡转换成频率信号f,送入单片机测频,对该频率进行运算处理求出被测电容的值,并送显示器显示。系统框图如图1所示,其主要由测量
[测试测量]
用555定时器如何设计电容测试仪?
1 引言 随着电子工业的发展,电子元器件急剧增加,电子元器件的适用范围也逐渐广泛起来,在应用中我们常常要测定电容的大小。因此,一种简单、实用的电容测试工具在实际中具有一定的实用价值。一般元件参数的数字化测量是把被测参数转换成频率后再进行测量,本设计采用555为核心的振荡电路,将被测电容值转化为频率,并利用AT89S51处理器测量出频率,再通过该频率值计算出电容参数值。 2 系统的原理框图 系统主要采用了555定时器构成的RC振荡电路和单片机技术。设计思路:被测电容C通过RC振荡转换成频率信号f,送入单片机测频,对该频率进行运算处理求出被测电容的值,并送显示器显示。系统框图如图1所示,其主要由测量电路和控制电路两部分组成。当接入被测
[测试测量]
详解基于555定时器的电容测试仪设计
1 引言 随着电子工业的发展,电子元器件急剧增加,电子元器件的适用范围也逐渐广泛起来,在应用中我们常常要测定电容的大小[1]。因此,一种简单、实用的电容测试工具在实际中具有一定的实用价值。一般元件参数的数字化测量是把被测参数转换成频率后再进行测量[2],本设计采用555为核心的振荡电路,将被测电容值转化为频率,并利用AT89S51处理器测量出频率,再通过该频率值计算出电容参数值。 2 系统的原理框图 系统主要采用了555定时器构成的RC振荡电路和单片机技术。设计思路:被测电容C通过RC振荡转换成频率信号f,送入单片机测频,对该频率进行运算处理求出被测电容的值,并送显示器显示。系统框图如图1所示,其主要由测量电
[单片机]
基于555定时器的电容测试仪设计
1 引言 随着电子工业的发展,电子元器件急剧增加,电子元器件的适用范围也逐渐广泛起来,在应用中我们常常要测定电容的大小 。因此,一种简单、实用的电容测试工具在实际中具有一定的实用价值。一般元件参数的数字化测量是把被测参数转换成频率后再进行测量 ,本设计采用555为核心的振荡电路,将被测电容值转化为频率,并利用AT89S51处理器测量出频率,再通过该频率值计算出电容参数值。 2 系统的原理框图 系统主要采用了555定时器构成的RC振荡电路和单片机技术。设计思路:被测电容C通过RC振荡转换成频率信号f,送入单片机测频,对该频率进行运算处理求出被测电容的值,并送显示器显示。系统框图如图1所示,其主要由测量电路和控制电路两部分组成。当接入
[单片机]
采用NE555定时器环境湿度测试仪系统电路设计
随着科技的发展,社会需要能够自动控制的监测设备,环境湿度测试仪就是一种用于环境湿度自动监测控制的设备。本文介绍基于计数器CC4060等构成的环境湿度测试仪,电路简单,调试方便,监测准确,精度高。湿度监测部分采用高分子薄膜式湿敏电容HS1100,具有不需校准的完全互换性,能瞬时退饱和。相对湿度在0%~100%RH范围内,电容量由162pF变到200pF,其误差不大于 2%RH,响应时间小于5 s,在55%RH、25℃、10 kHz条件下,其典型标称电容为180pF,供电电压一般选5 V,工作温度-40℃~100℃。HS1101($5.4714)用做湿度传感器时,测量电路有两种设计方案,一种是线性电压输出式,比例系数为正值;另一种是
[测试测量]
采用NE555定时器环境湿度测试仪系统电路设计
随着科技的发展,社会需要能够自动控制的监测设备,环境湿度测试仪就是一种用于环境湿度自动监测控制的设备。本文介绍基于计数器CC4060等构成的环境湿度测试仪,电路简单,调试方便,监测准确,精度高。湿度监测部分采用高分子薄膜式湿敏电容HS1100,具有不需校准的完全互换性,能瞬时退饱和。相对湿度在0%~100%RH范围内,电容量由162pF变到200pF,其误差不大于±2%RH,响应时间小于5 s,在55%RH、25℃、10 kHz条件下,其典型标称电容为180pF,供电电压一般选5 V,工作温度-40℃~100℃。HS1101用做湿度传感器时,测量电路有两种设计方案,一种是线性电压输出式,比例系数为正值;另一种是线性频率输出式,
[电源管理]
基于AT89C51单片机和555定时器的电阻电容测量系统设计
本文介绍了一种基于555定时器和单片机的数显式电阻和电容测量系统设计方案。该系统利用555和待测电阻或电容组成多谐振荡器,通过单片机测量555输出信号的周期,根据周期与待测电阻或电容的数学关系计算出电阻或电容值,再将之在LCD1602上显示出来。最后仿真结果表明该测量系统具有结构简单,方便实用等优点,能够测量一定范围内的电阻和电容值。 1.引言 在电子仪器、仪表的制造及使用行业,有大量的印刷电路板需要调试、测量与维修,需要对电阻电容的数值进行测试。 本文介绍了一种基于AT89C51单片机和555定时器的数显式电阻和电容测量系统设计方案,然后制作出电路实物,实现系统的功能。系统利用555定时器和待测电阻(或电容)组
[单片机]
基于AD9854与STM32设计的频率特性测试仪
随着现代电子技术的飞速发展,频率特性测试仪作为现代电子测量领域的一种重要工具,其设计理念也在不断地革新。频率特性测试仪是一种测试网络或者电路的频率特性的仪器,又称扫频仪;可以用来测量信号传输网络、信号放大电路及滤波电路等双端口网络的幅频特性与相频特性。由于在传统的扫频仪设计方法中,被测网络幅频特性与相频特性的获取,需要通过不同的电路模块分别进行峰值检测与相位差测量,导致其系统由多个模块构成,电路复杂且体积较大。因此本文设计了一种新的频率特性测试仪,其采用直接频率合成(DDS)芯片AD9854产生正交扫频信号,并以低功耗单片机STM32作为任务控制与数据处理的核心部件。 1.总体方案 该频率特性测试仪的设计基于零中频正交解调原
[单片机]