示波器可用于电磁干扰(EMI)排查?(二)

发布者:RadiantGlow最新更新时间:2020-02-29 来源: eefocus关键字:示波器  电磁干扰  EMI  排查 手机看文章 扫描二维码
随时随地手机看文章

  在上一部分中,我们通过RTO强大的频谱分析功能展示了其在EMI排查方面的巨大潜力。RTO上面的一些新且强大的特性,如多重重叠的FFT算法、选通的FFT分析功能和频谱模板违规测试和捕获,所有的这些都能够给您的实际EMI调试诊断带来极大的便利性。


  为了能够在实际调试中最大化地利用这些新特性,我们先来回顾一下工程师在排查EMI问题所面临的最常见的挑战,并探讨RTO示波器在这方面的测试分析能力。


  1、骚扰信号往往小到mV级别

  一般情况下,电磁干扰被捕获和分析的信号幅度往往在mV(1mV=60dBuV)级别。在该档位下,传统的示波器要么无法做到全带宽的测试,要么无法真实显示1mV/div的量程(依赖软件放大来达到1mV/div)。因此,为了捕获这些非常低振幅的信号,就要求示波器具有高灵敏度和高动态测量。

图1:这是一个使用近场探头捕获骚扰信号的典型案例。请注意左侧1mV/div设置下的放大画面。一个具有真实1mV/div量程的示波器才具有完整捕获这类微小信号的能力。


  2、区分出无用的骚扰行为

  为了了解被测件EMI的本质,需要在整个感兴趣的频段内判明EMI问题的总体分布,判断骚扰是由磁场还是电场产生、是宽带的骚扰还是窄带的骚扰。示波器的一个重要的特点是既能够在高到GHz级别的频段上进行捕获,了解被测件在宽带范围内的总体分布;又能够灵活地调整FFT的分析频跨方便对不同的宽带或窄带骚扰进行分析。

图2:上图:频谱跨度覆盖DC-1GHz;下图:频谱覆盖从125MHz到175MHz。EMI排查的典型做法一般是从宽带开始,特别是当故障频点位置未知的情况下,更显得尤为必要;当异常频点出现时,可以马上修改FFT的分析频跨以获得更好的分析效果。


  3、捕获快速瞬变或间歇性的骚扰

  某些类型的骚扰出现的频度很低或呈现间歇性,如因设计问题所引入的毛刺信号(图3),电源开关切换,设备状态的变化(图4)或跳频信号的引入等。RTO示波器具有极高的波形捕获和后处理能力,并提供更好的触发架构来支持捕获这些间歇性的骚扰。

图3:这是由时钟信号上的一个偶发毛刺信号导致的瞬态骚扰(顶部:时域下的时钟信号;中部:针对毛刺信号出现区域的局部放大;底部:频谱)。毛刺信号引起了一个宽频带的频谱分布叠加在时钟信号的谐波频谱之上。


  4、识别和关联骚扰的能力

  通常情况下,EMI的排查会卡顿在某个瓶颈之下,这时你无法简单判断EMI辐射问题的根本原因。而如果此时能够将辐射骚扰关联到模拟或数字信号上面,或者借助时域中的协议分析进行根源分析排查将会加快调试进程。而示波器能够让你轻松地触发特定总线信号,并观察因设备特定状态切换导致的间歇性辐射。同样的,对于因电源状态切换导致的意料之外的辐射骚扰也能够被测量出来。


  以下图4为例,被测件的EMI事件只发生在CAN总线进行通讯的特定时刻。这种情况下,你可以通过选通的FFT功能关联时域和频谱信号,通过选通窗口沿着波形轨迹移动来推断辐射骚扰所对应的特定CAN总线传输信号。

图4:顶部:时域中的CAN总线信号;中间:CAN总线协议解码;左下:完整时域信号的频谱;右下:选通窗口部分所对应的频谱。右边的频谱对应的是白色选通窗口中时域波形,该时刻下没有CAN信号传输。左下的频谱则在50MHz频段处观察到了噪杂的辐射骚扰。


  在以上的内容里,我们仅仅是讨论了现代示波器进行EMI调试诊断的一小部分案例。在接下来的文章中,我们将深入探讨EMI调试设置:从近场探头的选择处理、相关信号的捕获和对辐射骚扰的分析。

关键字:示波器  电磁干扰  EMI  排查 引用地址:示波器可用于电磁干扰(EMI)排查?(二)

上一篇:示波器可用于电磁干扰(EMI)排查?(三)
下一篇:示波器可用于电磁干扰(EMI)排查(一)

推荐阅读最新更新时间:2024-10-31 11:53

非常见问题第188期:抑制复杂的FM频段传导EMI的策略
问题: 如何抑制来自开关电源的复杂的FM频段传导辐射? 答案: 虽然EMI屏蔽和铁氧体夹是较受欢迎的EMI解决方案,但它们价格昂贵、体积笨重,有时使用效果不理想。我们可以通过了解FM频段EMI噪声的来源,以及利用电路和PCB设计技术从源头进行抑制,以降低这些噪声。 电源网络的EMI性能在噪声敏感型系统中至关重要,例如汽车电路,尤其是涉及开关模式电源(SMPS)的情况下。工程师们可能需要花费大量时间来减少传导辐射(CE)和电磁辐射骚扰(RE)。特别是,在测量CE时,FM频段(76 MHz至~108 MHz)可能是最难达到要求并通过测试的区域。设计人员可能需要花费大量时间来解决这一问题。为何FM频段中的CE噪声如
[电源管理]
非常见问题第188期:抑制复杂的FM频段传导<font color='red'>EMI</font>的策略
示波器自动量程功能快速评估电源质量
评估直流电源质量的参数有很多,其中纹波当属最重要的参数,一般测纹波的方法有示波器和万用表(频响100KHZ以上的真有效值表),两种方法各有优缺点,示波器主要是能看纹波波形、直观、频响高、对交流成分测量比较准确,但是操作比较麻烦,测直流电压时通道要用直流耦合,测量精度也相对较低,测量纹波时通道耦合要用交流。 万用表操作相对方便,测量直流电压精度较高,但是测量数据不够全面,对万用表要求较高(频响100KHZ以上真有效值),用双显示万用表测量时,建议交流和直流分两次测量(尽管稍微有点麻烦),尽量不要用双显模式,我发现几乎所有的手持万用表包括绝大多数台式万用表,在交、直流双显模式速度都很慢,而且所有手持万用表交流和直流都使用相同的量程,例
[测试测量]
用<font color='red'>示波器</font>自动量程功能快速评估电源质量
安全与隔离,医用逆变电源的关键点
安全与隔离是普通商用电源与医疗用电源的一个重大差别。通常,除了一些实验分析类仪器,医疗设备大多安装在病床或手术台附近,离人和操作者的距离比较近,外壳常常会被触及到。医疗设备内部有各种各样的强,弱电的部件,如果强弱电之间的隔离或者是外壳材料绝缘有问题,就会非常危险。安全测试方面一般医疗设备电源都必须得到UL60601-1、C-UL、EN60601-1等安全认证。输入输出端必须要4000V以上的隔离电压,而且要求对地漏电流低,符合安规爬电距离要求。而对于强电部分需采用双重绝缘,尤其有可能与设备外壳接触的部分更要加强绝缘设计。 电磁兼容性和抗电磁干扰能力 要为医疗类设备选择或者搭建一个好的供电系统,必须注意提高电源的电磁兼容性和抗电磁干扰
[电源管理]
什么是示波器的触发?
任何示波器的存储器都是有限的,因此所有示波器都必须使用触发。触发是示波器应该发现的用户感兴趣的事件。换句话说,它是用户想要在波形中寻找的东西。触发可以是一个事件(即波形中的问题),但不是所有的触发都是事件。触发实例包括边沿触发、毛刺信号触发和数字码型触发。 示波器必须使用触发的原因在于其存储器的容量有限。例如,Agilent90000系列示波器具有20亿采样的存储器深度。但是,即便拥有如此大容量的存储器,示波器仍需要一些事件来区分哪20亿个采样需要显示给用户。尽管20亿的采样听起来似乎非常庞大,但这仍不足以确保示波器存储器能够捕获到感兴趣的事件。 示波器的存储器可视为一个传送带。无论什么时候进行新的采样,采样都会存储到存储器中
[测试测量]
维护保养 | 原来示波器故障是这样引起的
您知道吗? 所有测试仪器故障中,硬件问题只占不到一成! 更多的是由于仪器缺少定期的点检,保养和示波器的使用不当导致性能异常需要进行维修或者调整。 示波器大数据为您揭秘如何让其“亮丽如新”的秘诀! 维护保养 | 原来示波器故障是这样引起的
[测试测量]
示波器的“两反”设置
  一是“反相”设置,您可以通过按下通道控制软键,打开通道菜单,ZDS2022示波器反相设置默认为OFF,您可以按下反相软键,打开反相,即可看到对应通道波形相对地电位翻转180度,在实际波形测量中,若是您有该功能设置需求,可在通道控制中进行相关操作。   图1 反相设置   另外一个便是“反色”设置,按下【Save/Recall】键后,打开存储菜单,可看到图像反色设置,系统默认为OFF,打开图像反色时,保存图像的RGB颜色编码会按位取反后再保存,屏幕上显现的即为图像反色开启后保存的图片。   图2 反色设置
[测试测量]
<font color='red'>示波器</font>的“两反”设置
数字示波器的垂直分辨率
垂直分辨率概念 用数字示波器测量模拟信号第一步就是用ADC(模数转换器)把探棒接收到的模拟信号转换成数字信号,ADC数模转换芯片的分辨率直接决定了示波器垂直方向上的采样精度。比如ADC是8位,那么垂直方向上的信号可以被切分成00000000~11111111一共2的8次方,256段。模数转换器的垂直分辨率,就是数字示波器的垂直分辨率,代表示波器将输入电压转换为数字值的精确程度。 数字示波器所显示的垂直分别率由什么决定 优先级从高到低 1.前端ADC的分辨率 2.显示屏分辨率:它决定了经过处理的信号,有多少可以被显示出来。比如ADC虽然可以在垂直方向上显示256段,但是可能显示屏的分辨率垂直只有240个像素点,那么有一部分点会被
[测试测量]
数字<font color='red'>示波器</font>的垂直分辨率
示波器的不同示波原理比较
   示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图形,便于人们研究各种电现象的变化过程。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。更广义地说,示波器是一种能够反映任何两个参数相互关联的X-Y坐标图形的显示仪器。示波器不仅应用于实验室,更成为信息时代不可缺少的辅助工具,利用示波器对电子产品的电路进行信号的检测和分析,可以大大提高检修效率。理解并掌握示波器的示波原理是解决这些问题的前提,但大多数同学对此难以理解。文献利用沙漏的单摆运动实验对示波器示波原理进行类比简化,解决了正弦波电压的显示原理问题;文献论述了示波管荧
[测试测量]
<font color='red'>示波器</font>的不同示波原理比较
小广播
最新测试测量文章
换一换 更多 相关热搜器件
随便看看

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved