loto示波器实践——超声波测距模块

发布者:科技舞者最新更新时间:2021-06-30 来源: eefocus关键字:示波器  超声波测距模块  智能小车 手机看文章 扫描二维码
随时随地手机看文章

我们这里用到的超声波测距模块,一般是用于arduino智能小车自动避障的。经常见到的应用是使用单片机或者stm32和这种模块结合进行开发的。


我们使用LOTO示波器可以更直观和快速的看到超声波测量距离模块的工作波形和结果。使用LOTO示波器测量超声波距离测量模块,可以直接省去了单片机编程环节,让测试更快速和直观。

对于LOTO示波器而言,如果你手里的是带有DE2扩展接口的型号,就直接把线缆接在DE2上,如果是只有DE1接口的型号,就把线缆接在DE1上。目前而言,带有DE2接口的型号是肯定支持这个模块的,只有DE1接口型号中,OSC482系列是肯定可以的。

这根线缆很简单,是根据LOTO的扩展口的定义把电源和iO引脚引出来制作的。

这个超声波距离测量传感器只需要很少几根线,一根3.3V/5v的电源,一根地线,一根IO线作为触发就可以了。还有一个输出引脚是距离输出,我们直接用示波器探头接就可以了。

loto示波器定义的DE-15扩展口上 14引脚是5V,15引脚是GND。DE-15有3个可以被上位机软件控制的GPIO,我们使用其中的一个作为模块的触发输入即可。我们使用引脚3的IO2。

我们把示波器的两个通道,分别用探头接到模块的触发输入和它的距离测量输出,这样我们就能同时观察输入和输出的波形了。

超声波模块距离测量的原理很简单,只要在它的输入引脚发送一个低电平到高电平的跳变,持续10微秒以上,再跳变到底电平,模块就会被触发进行测量距离。

我们手动操作示波器的上位机软件来控制IO口的触发变化,那么它的高电平持续时间是远远大于10微秒的,所以是可行的。

模块的输入被触发了以后,它的内部会做一系列的操作,这个我们就不用管了,我们只要等待它的距离输出结果就可以了。

测量完成模块的输出引脚会出现一个高电平,高电平的宽度就代表着实际距离前方障碍物的距离。我们只需要捕捉这个高电平宽度,就可以利用转换公式将电平宽度转换成距离。

这种用LOTO示波器接超声波模块测量距离的方法,可以用在智能检测应用的二次开发中。

我们先随便设置一个时间档位,比如1毫秒,通道A我们接的是模块的输入信号,通道B接的是模块的输出信号。输入信号是我们手动控制的IO口,是一个3.3V逻辑的GPIO,所以通道A的档位我们选择1V/DIV就可以。因为我们给模块供电是5V的,所以模块的输出电平是5V的,我们可以使用探头的X10档,然后软件设置使用0.2V/DIV。两个通道都使用直流耦合

我们使用示波器的触发功能来捕获模块的触发输入。我们将触发电平设置在0~3.3V之间即可,用下降沿触发。

我们在软件的扩展标签页里设置IO口控制为IO输出,并且把IO2设置成低电平输出状态。这样就都设置完毕了,我们可以开是在IO2输出一个高电平触发信号了。

我们先输出高电平,然后输出低电平,来触发模块开始测量距离。

我们看到已经触发到了信号了,蓝色的是通道A的IO2触发信号,黄色的就是模块的距离输出电平信号。


黄色波形的高电平宽度就代表着被测量到的距离。

在LOTO示波器上有多种方式对这个时间宽度结果进行测量。我们可以拖动标尺测量,也可以用鼠标框选一个测量区域自动计算出时间跨度,也可以在波形的跳动边沿放置浮动光标显示时刻数值,也可以打开自动多点测量功能,让系统自动标记跳变边沿并直接自动显示跳变边沿之间的时间差值。

我们用挡板放在超声波模块前面不同的距离处,可以测到不同的高电平宽度的输出信号。


关键字:示波器  超声波测距模块  智能小车 引用地址:loto示波器实践——超声波测距模块

上一篇:如何判断泰克示波器指标是否正常
下一篇:LOTO示波器实测——光照强度传感器

推荐阅读最新更新时间:2024-11-17 13:00

LOTO示波器软件功能——XML文件添加自定义探头
在这里,我介绍了2020年10月添加的新功能。即用户可以定义和添加自己的探针。我们的示波器几乎所有型号都添加了此功能。这是两个通道的自定义探针设置。我们原始的自定义探针功能只能在线设置,不能由用户添加和保存。 现在,客户添加的探针可以显示在此列表中。客户添加的探针具有两个通道的选项。例如,如果此探针是我自己定义的,那么我可以在列表中找到并选择它以使用。定制探头使用两组值将标准电压探头校准为新的定制探头,因此用户只需要提供这两组值即可。用户还需要提供定制探针的新物理单元。最后,我们可以将探针命名为XML文件名。 现在,让我们尝试一个自定义探针。我们将在示波器的软件目录中找到一个Probes文件夹,在这里构建探针的XML文件。
[测试测量]
LOTO<font color='red'>示波器</font>软件功能——XML文件添加自定义探头
如何将示波器信号完整数据导入数学分析软件进行计算
学习如何将麦科信示波器信号的完整数据导入matlab进行分析,我们先要学习如何完整导出示波器的信号数据。示波器可将模拟通道或数学通道波形保存到本地或者U盘,文件类型可选择WAV、CSV或BIN。 WAV是数据文件保存的第一种方式,它会将当前通道显示的波形数据进行抽样后保存为二进制文件。以WAV格式保存到本地或者外部存储器中的数据,可在本机通过REF参考通道调用打开、查看、缩放等。 如下图就是将通道一保存为参考通道的显示结果,可以看到参考通道的数据为87.5K,和原始28M数据相比是有比较大差别的。而且数据无法进行计算分析。 CSV是数据文件保存的第二种方式,它会保存示波器当前通道的波形数据, 以CSV格式存到示波器内部
[测试测量]
如何将<font color='red'>示波器</font>信号完整数据导入数学分析软件进行计算
第十五讲 示波器基础之响应方式对信号采集保真度的影响
中心议题: 幅度响应和相位频响都可以影响脉冲响应效果 脉冲响应优化方式可以降低幅频响应或相频响应对被测信号的负面效应 解决方案 测量眼图最好使用线性相位;但测试其他通用信号使用最小相位响应更好 应结合实际使用选择不同的响应优化模式 1.脉冲响应原理 图1 21次正弦谐波分量叠加后的脉冲波形 一般来说,高速串行数据分析对仪器带宽的最低要求是能采集到信号基频的5次谐波,比如PCI Express 2.5Gbps数据率对应的时钟频率为1.25GHz,5次谐波则为6.25GHz,最低配置应为6GHz带宽示波器或串行数据分析仪(比如力科SDA 760Zi)。下图2为最高到5次正弦谐波合成后的脉冲结果. 图2 5次正弦谐波分量叠加后的脉冲
[测试测量]
第十五讲 <font color='red'>示波器</font>基础之响应方式对信号采集保真度的影响
如何设计基于stm32的数字示波器
随着集成电路的发展和数字信号处理技术的采用,数字示波器已成为集显示、测量、运算、分析、记录等各种功能于一体的智能化测量仪器。数字示波器在性能上也逐渐超越模拟示波器,并有取而代之的趋势。与模拟示波器相比,数字示波器不仅具有可存储波形、体积小、功耗低,使用方便等优点,而且还具有强大的信号实时处理分析功能。因此,数字示波器的使用越来越广泛。目前我国国内自主研发的高性能数字示波器还是比较少,广泛使用的仍是国外产品。因此,有必要对高性能数字示波器进行广泛和深入研究。 本文通过采用高速高性能器件,设计了一实时采样率为60 msa/s的宽带数字示波器。 1 数字示波器的性能参数设计 数字存储示波器的指标很多,包括采样率、带宽、灵敏度、通
[测试测量]
如何设计基于stm32的数字<font color='red'>示波器</font>
示波器使用技巧,就应该这么用!
示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图象,便于人们研究各种电现象的变化过程。 示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。 下面就简单说下示波器使用小技巧: 1.通用示波器通过调节亮度和聚焦旋钮使光点直径最小以使波形清晰,减小测试误差;不要使光点停留在一点不动,否则电子束轰击一点宜在荧光屏上形成暗斑,损坏荧光屏。 2.测量
[测试测量]
<font color='red'>示波器</font>使用技巧,就应该这么用!
为什么不同示波器的纹波噪声测量结果总是不同?
一、纹波和噪声的区别 纹波 由于开关电源的开关管工作在高频的开关状态,每一个开关过程,电能从输入端被“泵到”输出端,在输出电容上形成一个充电和放电的过程,从而造成输出电压的波动,而且此波动的频率与开关管的开关频率相同,这个波动就是输出纹波,是叠加在输出直流上的交流成分,纹波的幅值是该交流成分的波峰与波谷之间的峰峰值。 噪声 噪声是开关电源自身产生一种高频脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成,噪声的频率比开关频率高的多,噪声电压的大小很大程度上与开关电源的拓扑、变压器的绕制、电路中的寄生参数、测试时外部的电磁环境以及PCB的布线设计有关。 基于此,纹波和噪声的区分就很好理解了。下面开始讨论测量。 二
[测试测量]
为什么不同<font color='red'>示波器</font>的纹波噪声测量结果总是不同?
业内专家分析示波器发展之5大流行趋势
  技术瞬息万变,示波器的最新应用也层出不穷。示波器制造商必须紧跟新的应用潮流,设计出能够满足用户特定需求的示波器和软件应用程序。本文将针对示波器市场出现的5个流行趋势进行分析。       趋势1:从并行测量发展到串行测量      过去的嵌入式设计通常采用并行体系结构,这意味着每个总线组成部分都有各自的路径。因此,只要您可以使用码型触发或状态触发找出感兴趣的事件,就可以直观地解码总线上的数据。      然而,现代嵌入式设计一般采用串行体系结构——即连续发送总线数据。这样做的原因是它需要的电路板空间较小、成本较低,并且采用嵌入时钟,功率要求也较低。图1显示的是CAN数据流,其中除嵌入时钟外,CAN信息还包含帧识别符开始、地址、数
[测试测量]
小广播
最新测试测量文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved