低电平组件需要超稳定的电源,而高速数字信号则需要具有可重复的边沿转换时间。数字信号的两个方面是相关的,您需要抑制电源噪声的所有方面以减少数字系统中的抖动。在设计调试期间,如果要隔离和消除电源噪声源,则需要在整个电路板上收集测量结果。这是您如何隔离直流线上会引起抖动的确定性强噪声源的方法。
电源噪声和抖动源
如果您曾经覆盖过数字信号的时域轨迹,那么您就对抖动很熟悉。该术语(有时与相位噪声互换使用)是指数字信号的边沿触发和通过逻辑电路的传播延迟中的波动。抖动与电源噪声密切相关,在电源噪声中,直流电源电平的波动会导致数字信号延迟触发或延迟触发。下表显示了一般半导体器件和PCB中电源噪声的主要来源。
噪声源 | 噪声类型 | 描述 |
开关噪声 | 周期 | 产生于开关调节器中的开关元件 |
高斯噪声 | 随机 | 由电容电阻能级的热波动引起,这通常不是电子设备中考虑的比较大噪声源 |
1/f噪声 | 随机 | 这主要于你的元件中的半导体晶格缺陷有关,尽管没有1/f噪声的单一来源 |
漂移 | 伪随机 | 这是局限在低频率,频率成分可以随时间变化 |
瞬态响应确定性 | 确定的 | 当一个系统有多个时钟时,这通常看起来是随机的,但是通过一些分析,你可以确定哪些组件是这种噪声的主要驱动因素 |
该表中的最后一项是最值得关注的一项,因为它对抖动的影响很大。PDN设计和分析中经常提到〜1 ps / mV的抖动灵敏度值。对于具有高电源电平和低上升时间(例如分别为3.3 V和〜1 ns)的器件,纹波引起的抖动可能仅在5%纹波时不会上升到15%以上。但是,随着组件变得越来越小以及开关速率增加,抖动和电源电压纹波的容差也越来越严格。
降低抖动需要在两个方面抑制电源噪声的影响:
在PDN上:您需要将PDN设计为低纹波,以防止强烈的抖动。如果您可以降低到几mV RMS纹波电压,那么您的PDN设计就做得很好。
时钟抖动:所有时钟对各种噪声源都有自己的敏感性,这会影响时钟信号输出的抖动。PDN应该设计为始终具有低纹波,但是时钟信号中的抖动仍会在组件的输出上产生抖动。这是由于在其他组件中锁存和触发位转换时出错。
当您拥有多个系统时钟时,最后一点将变得更加困难,并且您需要确定对抖动影响比较大的时钟。对于系统时钟,或来自单个源的多条时钟线,您可能可以查明特定组件的抖动源。通常,多个时钟将导致PDN上的瞬态纹波,然后造成系统中其他位置的抖动。自然抖动也有一个下限,与瞬态纹波无关。这只能通过使用PLL锁定到更稳定的参考振荡器来清除。最后,一个PDN部分(例如5 V)上的噪声可能会在另一PDN部分(例如3.3 V)上产生噪声。
如果可以测量抖动和电源噪声,则可以确定对组件中的抖动影响比较大的噪声源。您需要的主要工具是可以收集眼图的高带宽示波器。
如何测量由于电源噪声和纹波引起的抖动
对于某些示波器来说,测量抖动非常困难,因为它在观察波形时依赖于边沿触发。从视觉上看,在观察示波器迹线时抖动并不明显,确定抖动可能需要手动平移并叠加多个信号迹线,以量化抖动。这就是为什么量化电源噪声及其抖动的标准方法是使用高质量的示波器收集眼图的原因。
眼图测量显示抖动和电平变化
收集了特定组件的眼图后,您可以将其与时域中PDN上纹波的直接测量值进行比较。应当在多种情况下执行此操作,因为瞬态纹波导致的电源噪声不会增加。在这种情况下,PDN电压波动被表示为正交相加的复数。
对于示波器对PDN纹波的任何测量,请使用衰减系数尽可能低的探头,因为这将防止探头夸大您测得的电源噪声。此外,请注意示波器的带宽。PDN上的瞬变可以具有高达〜1 GHz的频率分量。仅使用需要收集准确测量值的带宽,因为这将使您看到PDN纹波中所有可能的毛刺。
您可能希望从时域PDN纹波测量中看到FFT结果。强大的高频噪声源对背景噪声非常明显
进行时域测量后,如果有多个有源组件,您将无法查看哪个开关组件或时钟是造成纹波的主要因素。而是将数据带入频域。功率谱中的任何强峰值将对应于某些组件或时钟在指定频率下的切换。然后,您可以采取措施减少所标识组件产生的纹波,例如添加去耦/旁路电容器或确保相关PDN上的更大的平面间电容。
关键字:电源噪声 纹波 抖动
引用地址:
如何测量由于电源噪声和纹波引起的抖动
推荐阅读最新更新时间:2024-11-04 04:48
铝基板输出纹波噪声的测试方法
开关电源的输出端存在差模和共模两种噪声,同时,测量纹波噪声时容易受到环境中随机噪声及电源辐射噪声的影响。因此,为了客观地测量开关电源输出的纹波-噪声,业内通常采用平行线测试法和双绞线测试法。邮电部推荐的双绞线测试法如图(1)所示;贝尔实验室推荐的针对半砖铝基板系列模块的平行线测试法如图(2)所示。 对于铝基板,新雷能科技股份有限公司采用图(2)所示的平行线测试法。具体要求为: 1、两条平行铜箔带的长度为51mm(2in.)到76mm(3in.)之间。 2、两条平行铜箔带的间距为2.54mm(0.1in.)。 3、合理地设置铜箔带的厚度和宽度,确保电流在两条铜箔带的总压降小于模块输出电压的2%。
[模拟电子]
同步降压转换器的设计方案
设计降压转换器并不是件轻松的工作。许多使用者都希望转换器是一个盒子,一端输入一个直流电压,另一端输出另一个直流电压。这个盒子可以有很多形式,可以是降阶来产生一个更低的电压,或是升压来产生一个更高的电压。还有很多特殊的选项,如升降压、反激和单端初级电感转换器(SEPIC),这是一种能让输出电压大于、小于或等于输入电压的DC-DC转换器。如果一个系统采用交流电工作,第一个AC-DC模块应当产生系统所需的最高的直流电压。因此,使用最广的器件是降压转换器。
使用开关稳压器的降压转换器具有所有转换器当中最高的效率。高效率意味着转换过程中的能量损耗更少,而且能简化热管理。
图1显示了一种降压开关稳压器的基本原理,即同步降压
[电源管理]
安捷伦科技公司推出具有完全抖动注入功能的7 Gb/s和12.5 Gb/s码型发生器
J-BERT选件能够快速精确地表征高速计算机接口 (北京,2007年2月2日) -- 安捷伦科技公司(NYSE:A)今天推出带有完全抖动注入能力的J-BERT N4903A 7 Gb/s和12.5 Gb/s码型发生器。设计和测试工程师现在可以使用所有类型的抖动快速精确地激励串行高速端口,以确保更高质量的设备性能表征。Agilent J-BERT N4903A码型发生器可与示波器、内置误码检测器或其他分析仪连用。 计算机行业正在推出使用 PCI Express、串行高级技术附件和全缓冲DIMM(双列直插内存模块)等技术的下一代多千兆位设备。工程师需要简单、经济高效的测试解决方案来表征这些高速接口以及对其进
[新品]
Exar推出可应用于电源噪声敏感的RF设备
弗里蒙特,加州,2011年12月13日- Exar公司(纳斯达克代码:EXAR)今天发布了一款全新低噪声高性能LDO ,支持高达2A的点负载。 XRP6272支持单路1.8V至6V的宽输入电压,支持最大电流2A的可调输出电压点负载。同时,它能保证低至0.7V的核电压以及高达5V的RF应用。极低的输出电压噪声与高电源抑制比(PSSR)相结合,使得该款产品成为噪声敏感型应用的理想之选。 XRP6272极低的静态电流,满足通用高性能的便携式设备应用。 “XRP6272提供了一个独特的点负载电源解决方案,同时满足低核电压和5V RF供电,”EXAR公司电源产品线市场总监Eric Pittana表示。 “它简化了对电源管理组件的选择,仅
[网络通信]
旋转编码器的抗抖动计数电路
摘要: 旋转编码器应用于角度定位或测量时,由于旋转轴的晃动可能引起编码器输出波形的,从而引发误计数现象。介绍了一个抗抖动计数电路,滤除了旋转编码器因抖动而造成的误计数。
关键词: 旋转编码器 抗抖动电路 数字电路
旋转编码器应用于角度定位或测量时,通常有A、B、Z三相输出。旋转编码器的输出波形见图1。A相和B相输出占空比为50%的方波。编码器每转一周,A相和B相输出固定数目的脉冲(如100个脉冲)。当编码器正向旋转时,A相比B相超前四分之一个周期;当编码器反向旋转时,B相比A相超前四分之一个周期。A相和B相输出方波的相位差为90°。编码器每转一周,Z相输出一个脉冲。由于编码器每转一周,A相和B
[测试测量]
高电压负输出充电泵可产生低噪声的正和负电源
引言
诸如运算放大器、驱动器或传感器等电子组件的运作通常需要双极性电源,但是在负载点却很少有一个可用的双极性电源。LTC3260 是一款具有两个低噪声 LDO 稳压器 的负输出充电泵 (无电感器) DC/DC转换器 ,可利用单个宽输入 (4.5V至 32V) 电源产生正和负电源。该器件能够在高效率的突发模式 (BurstMode) 操作与低噪声的恒定频率模式之间切换,从而使其同时受到便携式应用和噪声敏感型应用所欢迎。LTC3260 采用扁平 3mm x 4mm DFN 封装或耐热性能增强型 16 引脚 MSOP 封装,可帮助实现具极少外部组件的紧凑型解决方案。图 1 示出了采用 LTC3260的典型 12V 至 ±5V 应用。
[电源管理]
抖动测量的几种方法
测试抖动常用在测试数据通信IC或测试电信网络中。抖动是应该呈现的数字信号沿与实际存在沿之间的差。时钟抖动可导致电和光数据流中的偏差位,引起误码。测量时钟抖动和数据信号就可揭示误码源。 测量和分析抖动可借助三种仪器:误码率(BER)测试仪,抖动分析仪和示波器(数字示波器和取样示波器)。 选用哪种仪器取决于应用,即电或光、数据通信以及位率。因为抖动是误码的主要原因,所以,首先需要测量的是BER。若网络、网络元件、子系统或IC的BER超过可接受的限制,则必须找到误差源。 大多数工程技术人员希望用仪器组合来跟踪抖动问题,先用BER测试仪、然后用抖动分析仪或示波器来隔离误差源。 BER测试仪 制造商需要测量其产品的BER,以保证产品
[测试测量]
电源设计小贴士:驾驭噪声电源
无噪声电源并非是偶然设计出来的。一种好的电源布局是在设计时最大程度的缩短实验时间。花费数分钟甚至是数小时的时间来仔细查看电源布局,便可以省去数天的故障排查时间。
图 1 显示的是电源内部一些主要噪声敏感型电路的结构图。将输出电压与一个参考电压进行比较以生成一个误差信号,然后再将该信号与一个斜坡相比较,以生成一个用于驱动功率级的 PWM(脉宽调制)信号。
电源噪声主要来自三个地方:误差放大器输入与输出、参考电压以及斜坡。对这些节点进行精心的电气设计和物理设计有助于最大程度地缩短故障诊断时间。一般而言,噪声会与这些低电平电路电容耦合。一种卓越的设计可以确保这些低电平电路的紧密布局,并远离所有开关波形。接地层也
[电源管理]