基于DSP的1553B总线通讯检测仪的设计

发布者:文江桂青最新更新时间:2006-11-14 来源: Control Engineering关键字:串行  TMS320F206 手机看文章 扫描二维码
随时随地手机看文章

  MIL-STD-1553B是一种时分制,命令/响应,集中控制式多路传输的半双工串行数据总线,其传输速度为1Mb/s,字长为20b,数据有效长度为16b,信息量最大的长度为32个字。其信息格式有总线控制器BC(Bus Controller)到远程终端RT(Remote Terminal),RT到RC,RT到RT,广播式和系统控制式。

  MIL-STD-1553B总线协议已经发展成为国际公认的数据总线标准,广泛地应用于航空电子综合系统中,目前国内外开发的各种1553B总线采集卡,大多采用的是美国DDC公司生产的BU-6150接口芯片,但是该芯片价格比较昂贵,开发成本较高,另许多商家望而兴叹。本文介绍的基于DSP的1553B总线通讯模块的设计,采用TI公司TMS320F206DSP芯片进行数字信号处理,用FPGA进行现场反复编程,降低了设计成本,满足了1553B通讯模块的开发需求。

1 TMS320F206的简介

  该1553B总线通讯模块的DSP采用TI公司的TMS320F206,用来实现1553B总线协议的主体部分,实现字和消息的处理等功能,TMS320F206是TI公司近年来推出的一种性价比较高的定点DSP芯片,采用静态CMOS集成电路工艺制造而成,DSP芯片先进的哈佛结构允许程序存储器和数据存储器独立编址、独立访问,两条总线可允许数据与指令的读取同时进行,从而使数据的吞吐率提高了一倍;专用的指令集提供了功能强大的信号处理操作。TMS320F206主要特点如下:

(1)5V工作电压,20MHz主频时,指令周期50ns;3个外部引脚中断;8级内部硬件堆栈,存放调用/中断返回地址;硬件等待;休眠的IDLE模式,低功耗;标准的IEEE1149.1仿真口。

(2)片内64k程序空间,64k数据空间,64kI/O空间,32k全局存储空间,片内544×16b双寻址RAM,32k×16b用户可编程FLASH,作为程序空间,4k×16b单寻址RAM,程序空间和数据空间之前可以进行数据搬移。

(3)片内16b定时器,片上软等待产生器,可以分别为程序空间,数据空间,I/O空间产生0-7个等待,片上振荡器和锁相环有倍频和分频功能,32b算术逻辑单元/累加器,16×16b乘法器,全双工异步串口UART,增强的同步串口,带4级FIFO。

2 系统的组成框图和工作原理

  检测仪采用单片机技术,可编程逻辑器件(FPGA)技术,数字信号处理(DSP)技术,结合1553B总线收发技术研制而成。既可以对单个航空电子设备进行离线检测,也可对飞机的整个总线的运行和各个记载设备的数据传输进行在线检测。检测仪整体采用个人数字助理(PDA)技术,数据输入、输出、处理、控制、显示等均集中在检测仪。

系统组成框图如图1所示。

  从数据信号流程方面:收数据时,外部数据送到收发器进行电压转换后,成为一组20b的串行数据,经过FPGA芯片EP20K200处理成16b并行数据经扩展口送到DSP处理,然后经双口RAM进行数据缓存,需要显示数据时,单片机CPU对双口RAM送来的16b并行数据进行分析存储,按要求转换成十六进制,二进制或者工程单位制送显示器显示,发数据时,CPU将键盘输入的数据按照十六进制、二进制或者工程单位制经转换后送双口RAM缓存,DSP从双口RAM读入数据,预处理后送EP20K200,EP20K200再进行转换处理,输出一组20b的串行数据到收发器,经变压耦合成符合1553B标准要求的串行数据,再经收发接口发送到数据总线上。

3 硬件电路设计

3.1 接收器和发送器

  1553B航空电子系统中,各终端设备与总线之间采用的是耦合的方式,分为变压器耦合和直接耦合,采用的美国DDC公司的BU-63152芯片,具有两个完全独立的双余度端口,完全满足1553B总线收、发的要求,接收器操作模式下,在引脚STROMB控制下,数据被变成双向的TTL电平,从RX DATA OUT和其非脚输出到下一级译码电路,发送器操作模式下,在引脚INHIBIT控制下,发送器部分从编码电路接收数据,发送到数据总线上。

3.2 FPGA模块

  将FPGA技术与数字信号处理DSP技术相结合是现代电子设计中常用的方法,该模块中的FPGA芯片接口主要实现以下功能:

(1)将总线上的串行信息流转换成处理机可以处理的并行信息或者与之相反;

(2)接收或发送信息时,能够识别或生成标准的1553B信息字和消息。

(3)完成与处理机之间的信息交换,包括1553B信息地址的分配,命令字(或状态字)的译码或返回状态字、发送数据字等。

  用FPGA实现编解码器,其基本功能与前面提到的BU-61580芯片相似,是该1553B总线检测仪的关键技术。

3.3 DSP模块

  TMS320F206是TI公司近年推出的一款设计成本最低,结构功能复杂度也较低的定点DSP,片内32k FLASH,4.5k RAM可以满足处理规模适中的任务,该检测仪中DSP模块的设计主要是对时钟电路,中断以及数据和地址总线的接口技术的把握,其主要接口电路如图2所示。

  由DSP接口电路图可以看出,DSP模块为整个系统提供了时钟电路,DSP芯片的中断由EP20K200产生,一方面通知F206读取数据,一方面通知DSP进行错误处理,由于DSP芯片的流水线操作方式,数字信号处理速度功能强大,满足了1553B协议传输速率大的特点。

3.4 双口RAM和显示模块

   由于在高速数据处理和采集系统中容易造成数据堵塞现象,高速数据接口的设计对整个系统数据传输的畅通起着重要的作用,该设计中采用的美国DDC公司的8k双口静态RAM IDT7025解决了数据堵塞的问题。

  在该设计中显示模块采用了一种内存接显示模块的硬件连接方式。DSP将欲显示的数据送入双口RAM,51单片机不断扫描内存,根据内存中的数据做出相应的处理,不断刷新显示屏上的内容,双口RAM的BUSY信号线为避免左右端口同时对同一存储单元写操作提供了硬件支持。设计中液晶显示模块采用16×16点阵的中文显示模块。

4 系统软件设计

  该1553B航空电子总线检测仪软件设计主要包括3大部分,用以驱动数据采集板卡,完成对各寄存器的配置,实现数据的收发检测。

4.1 FPGA控制程序

  该部分采用硬件描述语言VHDL进行编程,用Synplify进行综合,以及采用Max+Plus II进行时序仿真,在FPGA上实现的MIL-STD-1553B总线接口中的曼彻斯特码编码、解码器,该逻辑可由状态机实现,可划分为4个状态进行;第1个状态行是空闲状态,当检测到数据跳变沿时,进入第2个状态;第2个状态为有效同步字头检测状态;当检测到有效同步字头时,启动第3个状态,用锁相环分离时钟,进行码型转换;当数据有效时进入第4个状态,进行并/串转换及奇偶校验。FPGA接收数据流程如图3所示。

4.2 DSP模块控制程序

  DSP部分的软件采用C语言和汇编语言混合编程,即具有C语言可移植性强的特点,又具有汇编语言执行速率快和直观的特点,该设计中DSP软件设计主要完成对FPGA和其内部通讯寄存器初始化;向FPGA发送数据时的控制命令操作,接受数据时命令字,状态字的处理,以及通知FPGA接受数据等,是整个系统控制的核心部分。图4给出DSP软件控制流程图。

5 结语

  基于1553B总线的航空电子检测仪主要用于部队航空电子设备在线和离线检测,同时满足BC和RT的功能,PDA的设计对检测也提供了极大便利,当然由于设计处于样机阶段,还存在一些不完善的地方,今后的改进空间还比较大。

关键字:串行  TMS320F206 引用地址:基于DSP的1553B总线通讯检测仪的设计

上一篇:嵌入式频率计的设计
下一篇:基于MSP430F449的数字频率计设计

推荐阅读最新更新时间:2024-03-30 22:04

12位单通道串行D/A转换器X79000
X79000是Xicor公司推出的12位单通道串行D/A转换器。其建立时间仅为6s。该芯片内置参考电压,且内带56字节的EEPROM,可用于保存用户数据。它可与MCU通过SPI进行接口,最高速度可达5MHz。一个MCU系统最多可以同时连接8个X79000器件,从而可以实现8路相互独立的高精度D/A输出。另外,X79000还可通过IO引脚直接增加或减少输出值,且每次的变化量都可以编程控制。X79000具有上电自动恢复断电前设定值的功能,它可在上电过程保持输出高阻,待上电完成后自动从非易失存储器中读出用户的设定值并输出。MCU通过检查其提供的上电完成信号来判断上电是否完成。虽然X79000是12位D/A转换器,但如果设置合理,该器件可以
[模拟电子]
工业串行总线的RS的485系统的维护
RS-485是一种低成本、易操作的通信系统,但是稳定性弱同时相互牵制性强,通常有一个节点出现故障会导致系统整体或局部的瘫痪,而且又难以判断。故向读者介绍一些维护RS-485的常用方法。 1.若出现系统完全瘫痪,大多因为某节点芯片的VA、VB对电源击穿,使用万用表测VA、VB间差模电压为零,而对地的共模电压大于3V,此时可通过测共模电压大小来排查,共模电压越大说明离故障点越近,反之越远; 2.集中供电的RS-485系统在上电时常常出现部分节点不正常,但每次又不完全一样。这是由于对RS-485的收发控制端TC设计不合理,造成微系统上电时节点收发状态混乱从而导致总线堵塞。改进的方法是将各微系统加装电源开关然后分别上电; 3.总线连续几个
[嵌入式]
关于单片机串行口红外通信的设计
多费率电能表是我国目前节约用电和计划用电政策下不可缺少的电能计量产品,多费率电能表的通信接口一般兼有红外接口和RS485接口。红外通信具有直观、操作简便、可靠性高等优点,是电能表中使用最为普遍的一种通信方式,是电能表和掌机之间实现抄表、编程、校时、数据管理等功能的有效手段。采用新茂单片机SSU7301(51系列)、日本光电子公司的红外发射管SE303和红外接收管PIC12043,以及单片机串行口、2个定时器/计数器可以有效地实现红外通信功能。 1 红外通信原理 红外通信是利用波长为900nm~1000nm的红外波作为信息的载体,发射装置把二进制信号经过高频调制后发送出去,接收装置把接收的红外高频信号进行解调为原来信息的一种通信传
[单片机]
80c51串行口内部结构介绍
2.80c51的串行口结构 2.1、内部结构介绍 AT89S51单片机串行口的内部结构如下图所示。它有两个物理上独立的接收、发送缓冲器SBUF(属于特殊功能寄存器),可同时发送、接收数据。发送缓冲器只能写入不能读出,接收缓冲器只能读出不能写入,两个缓冲器共用一个特殊功能寄存器字节地址(99H)。 TXD(P3.0)发送数据 Transmit(tx) Data 简写形式 RXD(P3.1)接受数据 Receive(rx) Data 简写形式 串行口的控制寄存器共有两个:特殊功能寄存器SCON和PCON。下面介绍这两个特殊功能寄存器各位的功能。 2.1.1、串行口控制寄存器SCON 串行口控制寄存器SCON,字
[单片机]
80c51<font color='red'>串行</font>口内部结构介绍
利用异步通信芯片16C552实现PC机与DSP的串行通讯
摘要:介绍了异步通信芯片16C552的功能、特点、结构和内部寄存器,给出了用16C552芯片实现PC机与DSP串行通讯的方法,同时给出了它们之间的硬件接口电路和软件初始化程序。 关键词:16C552;串行通讯;异步 当实现PC机与DSP的串行通讯时,通常可直接利用DSP的串行通讯接口(SCI)模块和SCI多处理器通讯协议(即空闲线路模式和地址位模式)来在同一串行线路中实现多个处理器之间的通讯,也可以采用SCI异步通讯模式实现串行通讯。这两种方式虽然都能方便地实现串行通讯,但它们都需占用系统较多的硬件和软件资源, 因而不适用于对实时性要求比较高且系统资源紧张的应用场合。笔者在研制电力有源滤波实验系统中,由于采用了异步通讯芯片
[网络通信]
STM32CubeMX系列教程5:串行通信(USART)
本章以串口为例讲解,HAL 库轮询,中断,DMA 三种编程模型。 1.前情回顾 在串行通信中,一个字符一个字符地传输,每个字符一位一位地传输,并且传输一个字符时,总是以“起始位”开始,以“停止位”结束。在进行传输之前,双方一定要使用同一个波特率设置。波特率就是每秒钟传输的数据位数。 常用的两种基本串行通信方式包括同步通信和异步通信。我们通常使用的是异步通信.异步通信规定传输的数据格式由起始位(start bit)、数据位(data bit)、奇偶校验位(parity bit)和停止位(stop bit)组成。 2.重定义printf函数。 打开STM32CubeMX新建工程,选择STMF746IGT6芯片,选择外部
[单片机]
STM32CubeMX系列教程5:<font color='red'>串行</font>通信(USART)
MCS-51单片机与二线制串行E2PROM的接口方法
二线制串行E2PROM是一种非易失存储器,以其体积小、功耗低、操作灵活、性价比高、存储数据可靠等诸多优点,是单片机应用系统中非易失存储器的理想选择。但二线制串行E2PROM的操作采用I2C总线协议,而MCS-51系列单片机没有I2C接口,我们在研制“GLM-500测湿仪”时,利用MCS-51单片机的两条I/O线,通过软件产生I2C总线所要求的操作时序,可方便地实现MCS-51对二线制串行E2PROM的读写操作。 1 二线制串行E2PROM的引脚功能及基本操作时序 图1是二线制串行E2PROM 24C01/02/04/08/16的引脚排列图。 仅SCL和SDA端为基本的总线操作端;SCL是串行时钟输入端;SDA是串行
[单片机]
MCS-51单片机与二线制<font color='red'>串行</font>E2PROM的接口方法
【STM32CubeMX】12,STM32之SPI串行FLASH
1,野火的自带版本讲的还不错,综合多方的资料看比较好 (1) SS ( Slave Select):从设备选择信号线,常称为片选信号线,也称为 NSS、CS,以下用 NSS 表示。当有多个 SPI 从设备与 SPI 主机相连时,设备的其它信号线 SCK、MOSI及 MISO 同时并联到相同的 SPI 总线上,即无论有多少个从设备,都共同只使用这 3 条总线;而每个从设备都有独立的这一条 NSS 信号线,本信号线独占主机的一个引脚,即有多少个从设备,就有多少条片选信号线。I2C 协议中通过设备地址来寻址、选中总线上的某个设备并与其进行通讯;而 SPI 协议中没有设备地址,它使用 NSS 信号线来寻址,当主机要选择从设备时,把该从
[单片机]
【STM32CubeMX】12,STM32之SPI<font color='red'>串行</font>FLASH
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved