一种具有实时振动补偿的显示模块的设计

发布者:SecretWhisper最新更新时间:2010-05-21 关键字:显示器件  振动  图像  显示模块 手机看文章 扫描二维码
随时随地手机看文章

引言

  我们跑步或骑自行车时,手臂的振动常常使我们手中的电子设备所显示的图像看起来模糊不清,长时间观看(如观看MP4视频、收发短信等)容易造成视觉疲劳。汽车轮船的显示设备(如车载GPS),强振动机床的数控系统以及一些工程机械(如挖掘机、推土机等)也会发生类似的问题。可见,由于振动而导致显示效果模糊不清的现象是普遍存在的。

  究其原因,在于这些显示设备输出的均为静态图像,基础的振动使其成为(相对于人)振动图像,由于人神经系统的滞后(人的正常反应时间大约需要0.3s),造成大脑所接收到的是模糊不清的画面。当然对于人的神经系统我们暂时束手无策,但是我们可以首先检测出基础的振动状态,由微控制器控制显示器件的输出图像朝反方向偏移(如此,实时的偏移即是动态显示),综合的显示效果自然是(相对于人)静止不动的图像,上面的问题就迎刃而解了。

问题的描述

  问题的产生

  正常情况下显示器件相对观察者是静止的,但很多情况下显示器件会发生振动,这些振动会使显示器件所显示的图像看起来模糊不清,长时间观看容易造成视觉疲劳。如图1所示,基础振动在⊿t时间内,产生(⊿x,⊿y)的绝对位移(这里假定人静止不动),由于显示器件所显示的图像是静态的或者是与基础振动无关的动态图像流,那么图像也会在这⊿t时间内产生(⊿x,⊿y)的绝对位移。人的视觉系统的反应速度(人的正常反应时间大约需要0.3s)低于基础振动的速度,几幅相互间有偏移的图像就会重叠在一起如图1所示,造成图像看起来模糊不清。

  

  问题的解决方法

  最容易也是最简单的解决办法就是测量出在⊿t时间内产生的(⊿x,⊿y)绝对位移值,然后控制显示器件使输出图像产生相反方向的偏移量(-⊿x,-⊿y)。这样综合的效果是图像相对观察者是静止的,图像又变得清晰了!

  要实现这种对振动图像的补偿会遇到几个挑战。首先,是基础振动的绝对位移值的测量,我们先来分析基础振动的特点:

  ·振动频率低(3Hz~30Hz);

  ·振幅较小(1mm~3mm),据此我们可以计算基础振动的最大加速度(amax=4π2f2?A=10.87g);

  ·对显示效果影响最大的是显示器件平面内的平面运动;

  ·振动多发生在便携设备上。

  针对这种振动最简单的测量方法是实时测得振动的加速度a,然后对其作时间的二次积分得到基础振动的绝对位移值,这种方法不适合做长时间的测量,因为积分的起始点选择可靠性和加速度的噪声会使长时间的积分运算后误差放大。现在问题归纳为对一个加速度a<10.87的振动进行实时测量,并对加速度a作二次积分计算位移值。其次,是如何实时输出具有相反方向偏移量的动态图像。这涉及到两个速度:处理器的运算速度和显示器件的响应速度。因为实时动态图像的显示需要很大的计算量(处理每秒钟40帧的128×64的单色图像就需要每秒40 kBytes的处理量,这对MCU是个较大的挑战);普通的LCD屏幕也要有较长的响应延时,刷新一幅128×64的单色图像就需要1024×72μs=73.7ms(ST7920),这简直无法实现图像的动态显示。还有一个问题是显示模块与信源的通讯,模块化设计要有方便的数据接口以适应不同的要求,还要考虑到显示模块长期的振动会使通讯电缆造成疲劳损坏。

设计概述

  基础振动的绝对位移值的测量

  上文提到,基础振动的绝对位移值的测量可归纳为对一个加速度 a<10.87的振动进行实时测量,并对加速度a作二次积分计算位移值。本系统中加速度传感器采用低量程三轴向加速度传感器MMA7260QT,最大量程为±6g,响应频宽为fXY=350Hz、fZ=150Hz,MMA7260QT的敏感方向如图3所示,XY轴输出电压与芯片平面内的加速度成比例。

  

  因为所要测量的加速度值和重力加速度值在一个量级,所以要考虑重力加速度的影响。让传感器平面平行于显示器件平面(如图4中的ABC平面为显示器平面,平面为水平面),初始位置时传感器各轴所测得的加速度分量aX0、aY0、aZ0反映了显示器相对水平面的倾角(图4中的θ1、θ2)。如果显示器只在当前平面内做平动,aX0、aY0、aZ0就是X、Y、Z的加速度的常值分量;如果显示器还在当前平面内有转动,只有aZ0是Z轴加速度的常值分量,aX0、aY0是随转角θ1、θ2而变的变量;如果显示器Z轴与铅垂线夹角还有变化,aZ0也是随转角θ1而变的变量。第一种情形的处理比较简单,直接将aX0、aY0、aZ0作为初始位置静止的初值,是积分不变量,进行二次积分即可得到位置;第二、三种情形处理较为复杂,要将aX0、aY0、aZ0作为初始位置运动的初值,也看作积分不变量,但是进行二次积分时要知道初始位置的运动参数,这要选择振动加速度的极值点(此时速度为零)作为运动的起始点开始积分,当然这种算法会稍微复杂。

  

  [page]

      还要考虑加速度的噪声会因为积分而被放大,使积分结果不准。加速度噪声的来源有:传感器本身的噪声、周边电路的电磁串扰、电源的波动、负载的波动(OLED的功耗与被点亮的点数成比例)。MMA7260QT传感器内部集成信号电路输出纹波较小(nRMS=4.7mVrms),为了滤去由于电磁干扰等引起的高频噪声,给系统加一个通频带在50Hz内的RC低通滤波器。由于模拟滤波器难以调整,系统的软件还加入了简单而且快速的数字惯性滤波器,能很好地消除周期性干扰和较宽频率的随机干扰信号。

  实时输出具有相反方向偏移量的动态图像

  上文已述及处理器的运算速度和显示器件的响应速度是两个关键。本系统显示器件选择OLED器件即有机发光二极管(Organic Light-Emitting Diode,OLED)该显示器件具有轻薄、易携、全彩、高亮度、省电、视角宽广及高应答速度等优点,为未来人机互动的接口开启了新的纪元,如今采用OLED作为显示器件的电子产品几乎已经普及。

  本系统所采用的OLED显示材料的响应时间在μs量级,OLED器件的驱动芯片SSD1303的并行总线写入时间仅为300ns,因此总的响应时间(包括驱动芯片的延迟和OLED材料的延迟)仍然是μs,只要MCU速度足够快,是完全能实现图像的动态显示的。另外SSD1303支持垂直偏移指令和水平滚动指令,因此只需将GDDRAM一次写满,图像需要平动时仅需要写一条偏移或滚动指令,而不是刷新整个GDDRAM。

  本系统所采用的微控制器MC9S08QG8工作频率高达20MHz,有8kBytes的FLASH存储器,512Bytes的RAM。如果处理器仅用来完成图像数据的变换和GDDRAM的刷新是没有问题的,但是处理器还要进行数字滤波等处理,难以完成所有的工作,因此系统采用偏移或滚动指令来实现平动。

  显示模块与信源的通讯

  为了方便与信源接口,本系统采用MC9S08QG8自带的SPI控制器,提供SPI接口作为信号输入通道。考虑到显示模块可能工作在比较恶劣的场合,通讯线缆连接固定的信源和振动的显示模块,会因为长期的弯曲而疲劳破坏,本系统特意设计集成了单片射频收发芯片,可以进行短距离无线数据传输。单片射频收发芯片采用挪威Nordic VLSI公司推出的单片射频收发芯片nRF905,它能简单地实现200m范围内的传输速率在100kb/s内的数据传输。

  硬件描述

  本系统的硬件框图如图5所示。整个硬件系统由微控制器电路、加速度传感器电路、滤波器电路、OLED电路、射频收发电路和稳压电路组成。

  

  本系统所设计的微控制器电路如图6所示,MC9S08QG8包含上电复位电路(POR)和内部时钟源(ICS),这会简化微控制器电路且减少外部时钟电路造成的高频干扰。MC9S08QG8具有单线的背景调试接口(BDM),能够进行实时总线捕捉,系统采用BDM进行系统调试并附加LED作为工作指示。

  

  OLED电路

 [page] 

      本系统如图7所示,是用双色OLED12864显示屏,采用SSD1303驱动。支持64级亮度控制,工作电压在2.4V-3.5V之间,最大列电极输出电流320μA,最大行电极吸入电流45mA,单色256级对比度控制,内置振荡器,垂直、水平滚动显示支持。OLED的片选端接到PA0,数据输入端与加速度采集端分时复用。由于本系统不需要读GDDRAM,为了节省I/O,将RD、RES端置高。

  

  射频收发电路

  射频收发电路如图8所示,采用挪威Nordic VLSI公司推出的单片射频收发模块nRF905,工作频率覆盖433/868/915MHz三个国际通用的ISM(工业、科学和医学)频段,可用在需要多信道工作的特殊场合;它是GMSK调制,抗干扰能力强,适合工业控制场合。采用DSS+PLL频率合成技术,频率稳定性极好;灵敏度高(达到+100dBm);最大发射功率达+10dBm;使用距离最远可达1000米。工作电压低(1.9V~3.6V),功耗小(待机状态仅为1μA),以+10dBm的输出功率发射时电流只有11mA,工作于接收模式时的电流为12.5mA,并且内建空闲模式与关机模式,易于实现节能。工作速率最高可达100kb/s,外围元件少(仅10个),基本无需调试。SPI控制脚接到MC9S08QG8的SPI脚上,接收数据完成脚DR接MC9S08QG8的外部中断请求脚(IRQ),JP3用来选择发送/接收模式。

  

  软件描述

  系统软件主要包括初始化模块、刷新GDDRAM模块、读取加速度模块、数字滤波模块、极值判断模块、积分模块、输出偏移量模块和中断处理模块。程序的流程如图9,具体的程序实现这里不作赘述。

关键字:显示器件  振动  图像  显示模块 引用地址:一种具有实时振动补偿的显示模块的设计

上一篇:Avedia数字标牌加速BRT时代的信息化步伐
下一篇:控创收购AP Labs,加强国防领域投入

推荐阅读最新更新时间:2024-03-16 10:52

瑞萨新颜亮相第十四届智能交通(ITS)世界大会
主题为“智能交通—创造美好生活”的第十四届智能交通(ITS)世界大会于2007年10月9日~13日在北京召开,这是ITS历史上首次在中国举办。时值中国政府的第11个五年计划中,为汽车产业明确提出了“安全环保”的发展目标,为达成这一目标,中国将ITS计划作为了一项重要的推进手段。同时,借助2008年奥运会和2010年上海万博会的契机,本届ITS上全面展示的中国智能交通建设的蓝图,也必将带动中国汽车电子的全面发展。因此,此次ITS大会在揭幕前就引起了国内外媒体的广泛关注。 正因为如此,以重视ITS的中国政府为首,以中国ITS建设的重要合作者——株式会社瑞萨科技为代表的汽车电子巨头和一些主要的汽车厂商都积极参与了展会。其中,全球半导体领
[焦点新闻]
东芝启动可实现图像和景深数据同步输出的双摄像头模块样品出货
东京--(美国商业资讯)--东芝公司(Toshiba Corporation)(TOKYO:6502)今天宣布其将于2014年1月31日启动双摄像头模块“TCM9518MD”样品出货,该模块可应用于智能手机、平板电脑和其它移动设备。此款新产品是业界首款 融合两个1/4英寸光学格式500万像素CMOS摄像模组(500万像素×2个列阵)的双摄像头模块,可同步输出记录图像和景深数据。 “TCM9518MD”配套的图像处理LSI可测量景深数据并将其附加到图像内的物体。结合客户的应用程序使用,该模块支持全新拍照功能,包括聚焦和散焦,甚至能够提取和擦除照片中的物体。 通过对双500万像素摄像头拍摄的照片进行像素提升,图像处理L
[手机便携]
基于图像处理技术的铜箔疵点检测系统研究
摘要:采用计算机图像处理技术对铜箔基板生产过程中产生的疵点进行检测分析。提出图像获取系统方案,获得快速运动下的清晰图像;并采用中值滤波、边缘检测及数字形态学方法进行疵点图像分割、提取,根据尺度计算,获取疵点的各类形态特征参数,为基板成品及次品检测提供依据。 关键词:CCD 边缘提取 数学形态学 闭运算 计算机辅助检测技术在工业生产及检测领域有着广泛的应用,生产线上成品及次品的检验工作在很大程度上依赖计算机图像处理技术的发展,如光学玻璃波形检测、纺织品检测、焊缝检测等应用。铜箔基板(CCL)是多层印刷线路板(PCB)生产的原料之一,其产品质量严重影响着印刷线路板的优劣,因此对铜箔基板的质量检测非常重要。在其生产过程中,需经过热压
[应用]
安森美汽车电子:照明、动力还是图像传感器,做就要到极
随着汽车轻量化、智能化和电气化的发展,全球汽车电子行业迎来了发展的黄金期。据预测,我国汽车电子市场2015年的增速为13.02%,市场规模有望突破4000亿元。适逢国际国内半导体行业风起云涌,并购不断,借着2015上海慕尼黑电子展的机会,安森美半导体在开展首日即3月17日举行了媒体发布会,安森美大中华区销售副总裁谢鸿裕、汽车解决方案工程中心高级经理张青及图像传感器高级技术经理何毓辉为我们解答了2015年有关安森美在汽车业务的策略与方案。   安森美半导体自1999年从摩托罗拉分拆之后,至今全球雇员已经有22000余人,去年总收入达32亿美元,其中汽车电子就占了30.5%,在世界范围内也可以说是汽车半导体市场的领头羊,市场份额占比
[嵌入式]
数字电位器在液晶显示模块温度补偿电路中的应用
  液晶显示器件独具的低压、微功耗特性使它可以直接与大规模集成电路结合开发出一系列具有便携显示功能的产品,再加之其显示信息量大和接口方便等优点,现在已被广泛应用于计算机和数字式仪表等领域,成为测量结果显示和人机对话的重要工具。本文方案选用SMC0820E液晶显示模块作为显示器件。为使LCM在不同的温度下有较好显示效果,还引入数字电位器X9313实现其温度补偿电路,有效控制LCM偏压输入。本文在介绍SMC0820E和X9313的基础上,讨论了两者的硬件接口电路及软件编程。    液晶显示模块SMC0820E   SMC0802E标准字符点阵型液晶显示模块,采用点阵型STN(Super Twisted Nematic)液晶显示器,
[模拟电子]
赋能旗舰级智能手机主摄应用,思特威推出全新5000万像素1/1.28英寸图像传感器SC580XS
2024年1月11日, 中国上海 — 思特威(上海)电子科技股份有限公司,重磅推出其首颗5000万像素1/1.28英寸图像传感器新品——SC580XS。此款新品是思特威继成功量产第一颗22nm HKMG Stack工艺的5000万像素1/1.56英寸产品SC550XS之后,在同一工艺平台打造的升级产品。 作为1.22µm像素尺寸图像传感器,SC580XS搭载思特威新一代像素技术SFCPixel®-2以及PixGain HDR®、AllPix ADAF®等多项技术和工艺,以高动态范围、低噪声、100%全像素对焦、超低功耗等性能优势,为旗舰级智能手机主摄带来出色的质感影像。 创新升级技术,打造实力质感影像 SC580X
[手机便携]
赋能旗舰级智能手机主摄应用,思特威推出全新5000万像素1/1.28英寸<font color='red'>图像</font>传感器SC580XS
振动测试电路
如图所示为振动测试电路。该测试电路由加速度计TA-25、集成运算放大器741(IC1、IC3、IC5、IC7)、场效应管输入的低漂移运算放大器等组成。其应用于周期性加速检测。由加速计TA-25输出的信号经过集成电路IC1(741)的低通和IC2(3521)的高通滤波后,以周期性加速度输出。该输出信号经交流积分器(IC3和IC4)积分、放大器IC7放大后变换为速度信号,再经交流积分器(IC5和IC6)积分后获得位移。本电路用于检测加速度计输入轴方向的周期振动,若有前后、左右和上下方向3组,则可检测3轴方向的振动,但检测上下方向振动时,仅有重力加速度1g左右,最大动态范围变窄。本电路测试的振动频率为1~50Hz,最大动态范围为 5g(使
[测试测量]
<font color='red'>振动</font>测试电路
利用示波器FFT功能简化振动分析
无论是普通消费品还是工业机械,振动分析在产品设计过程中都是必不可少的一步。设计工程师需要了解并解决振动带来的影响,以确保产品的寿命、安全性和可靠性。过去完成这项工作要用昂贵复杂的工具,使得振动分析需要富有经验的专业人员才能完成,本文介绍用普通带FFT功能的示波器进行振动分析,一般机械工程师稍加训练即可完成这项任务。 具有快速傅立叶变换(FFT)功能的低价位示波器是一种功能齐全而又使用方便的工具,它可以帮助机械工程师确定被测物的本征频率、共鸣峰值、频率范围及衰减曲线等,即使没有多少电子测量经验的工程师也只需几个简单的加速计和连线就可以设定、测量和分析产品的振动特性。 它物理现象的频率分析,但示波器对机械工程师来说还不是很熟悉,尤
[测试测量]
利用示波器FFT功能简化<font color='red'>振动</font>分析
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新安防电子文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 视频监控 智能卡 防盗报警 智能管理 处理器 传感器 其他技术 综合资讯 安防论坛

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved