EFT/ESD问题的测量和定位

发布者:量子心跳最新更新时间:2006-05-22 来源: 电子工程专辑关键字:突发  干扰  通信  耦合 手机看文章 扫描二维码
随时随地手机看文章

大部分电子产品需要通过电快速瞬变脉冲群(EFT)(根据IEC61000-4-4)和静电放电(ESD)(根据IEC61000-4-2)等项目的标准测试。EFT和ESD是两种典型的突发干扰,EFT信号单脉冲的峰值电压可高达4kV,上升沿5ns。接触放电测试时的ESD信号的峰值电压可高达8kV,上升时间小于1ns。这两种突发干扰,都具有突发、高压、宽频等特征。

在进行标准的EFT/ESD测试时,把干扰脉冲从设备外部耦合到内部,同时监视设备的工作状态。如果设备没有通过这些标准的测试,测试本身几乎不能提供任何如何解决问题的信息。

要想定位被测物(EUT)对突发干扰敏感的原因和位置,必须进行信号测量。但是如果采用示波器进行测量的话,EUT内部的干扰会产生变化。例如图1中,使用金属导线的探头连接到示波器,会形成一个额外的干扰电流路径,从而影响测试结果,很难定位产生ESD/EFT问题的原因。

图1 用示波器测量EFT/ESD

EFT/ESD干扰电路正常工作的机理

在进行EFT/ESD等抗扰度测试时,需要把相应的突发干扰施加到EUT的电源线,信号线或者机箱等位置。干扰电流会通过电缆或者机箱,流入EUT的内部电路,可能会引起EUT技术指标的下降,例如干扰音频或视频信号,或者引起通信误码等;也可能引起系统复位,停止工作,甚至损坏器件等。

电子产品的抗干扰特性,取决于其PCB设计和集成电路的敏感度。电路对EFT/ESD信号敏感的位置,一般能被精确定位。形成这些"敏感点"的原因,很大程度上取决于GND/VCC的形状以及集成电路的类型和制造商。

实践发现,产生EFT/ESD问题的最主要的原因是,干扰电流的主要部分会流入低阻抗的电源系统。干扰电流能通过直接的连接进入GND系统,再由线路连接,从另外一个地方耦合出来;干扰电流也能通过直接连接进入GND系统,然后通过和金属块(例如机箱)等物体的容性耦合方式,以电场的方式(场束)耦合出来。

干扰脉冲电流I通过电缆或者电容渗透到PCB内。由干扰电流产生电场干扰(电场强度E)或者磁场干扰(磁场强度B)。磁脉冲场B或电脉冲场E是影响PCB最主要的基本元素,一般来说,敏感点要么仅对磁场敏感,要么仅对电场敏感。

干扰电流I通过电源线注入到设备内部。由于旁路电容C的存在,一部分电流IA离开了被测物,内部的干扰电流Ii被减少了。图中所示的由干扰电流Ii产生的磁场B会影响它周围几厘米范围内的电路模块,一般电路模块内只会有很少的信号线会对磁场B敏感。

需要注意,磁场不仅仅由电源线电缆上干扰电流I以及排状电缆上的电流产生,旁路电容C的电流路径以及内部GND和VCC上的电流,会扩大干扰范围。

在电源系统(主要是GND)上流动的干扰电流,产生的很强的宽频谱电磁场,能干扰其周围几厘米范围内的集成电路或者信号线,如果敏感的信号线或者器件,例如复位信号、片选信号、晶体等,正好放置在干扰电流路径周围,系统就可能由此引起各种不稳定的现象。

一般情况下,一块PCB上只会存在少量的敏感点,而且每个敏感点也会被限制在很少的区域。在把这些敏感点找出来,并采取适当的手段后,就能提高产品的抗干扰性能。

由此可见,为了定位EUT不能通过EFT/ESD测试的原因,我们就必须首先找出这些突发干扰在系统内部的电流路径,再找出该路径周围存在哪些敏感的信号线和器件(敏感点),之后可以采取改善接地系统以改变电流路径,或者移动敏感信号线和器件的位置等方法,从根本上以最低的成本解决EFT/ESD问题。

E1抗干扰开发系统

由于EFT/ESD信号具有高压和宽频谱等特征,传统的示波器和频谱分析仪很难测量干扰电流的路径。本文介绍的E1抗干扰开发系统,专门用于测量和排除EFT/ESD问题。E1系统由四大部分组成:

1.产生突发干扰的突发干扰信号源SGZ21

SGZ21产生连续的类似于EFT或者ESD的干扰脉冲,脉冲的上升沿时间为2ns,下降沿时间为约10ns。这些脉冲包含的能量比标准的EFT脉冲或ESD脉冲小,因此能在不损坏被测设备的情况下,把干扰直接耦合到EUT的内部PCB上。

SGZ21输出的脉冲信号,其脉冲幅度是连续变化的,峰值在0-1500V之间,按统计平均分布。利用这种方法,配合传感器,加上SGZ21内置的光纤输入计数器,能对PCB进行特别快速的抗干扰性能评估。

SGZ21采用电气隔离(无大地参考)的对称输出。干扰脉冲能被容性耦合,极性可变。这样,就能采用各种耦合方式,例如:

a. 把发生器的输出直接连接到被测物的GND系统上,把干扰电流直接注入到GND系统。

b. 把干扰电流注入到GND,然后从VCC返回。

c. 干扰电流可以注入到变压器、分配器或者光耦的初级,从次级返回。

2.接收突发干扰的瞬态磁场探头MS02

流过EUT的干扰电流会产生磁场。通过磁场的强度和方向等信息能提供干扰电流的分布情况。MS02瞬态磁场探头是一个无源探头,通过光纤连接到SGZ21计数器的输入,利用计数器的读数,可以测量突发电磁场的相对强度。

如果MS02检测到磁场脉冲,它就会发出一个光脉冲。光脉冲的数量,可以在SGZ21计数器上读到,这个值和测量到的平均磁场强度成一定的比例。只有穿过探头环的磁力线才会被检测到,因此通过旋转探头的方向,找到最大计数值,可以检测到磁力线的方向,从而准确探测干扰电流的方向。见图4

3.将信号源的电输出变为突发电磁场的电场和磁场场源探头组

场源探头组,包括各种尺寸和形状的磁场场源探头和电场场源探头,最小分辨率可小于1mm。可以连接到SGZ21信号源的输出,向被测电路中的接地系统、电源系统、集成电路、引脚、分立元件、关键布线、电缆、接插件等地方注入干扰,用于精确定位电路敏感点位置。

在利用SGZ21信号源和瞬态磁场探头找出干扰电流的路径之后,使用场源探头,可以检查该路径周围是否存在敏感的信号线或者器件,如果是器件,还应该检查是器件的哪个引脚。

不同的电路结构,可能会对磁场敏感,也可能会对电场敏感。E1中的场源,有的是产生磁场的,有的是产生电场的,这样可以确认EUT对哪种类型的干扰场敏感。

4.检测集成电路敏感度的IC传感器等

为了评估电路修改的有效性,特殊设计的IC传感器S31能和EUT内部器件一样,感应突发干扰对数字逻辑的影响,并把干扰情况通过光纤传递到计数器。

E1抗干扰开发系统,配置有多种EMC传感器,可以监测PCB上的关键信号线、电源、地、电缆、接插件等被干扰的情况。

利用E1抗干扰开发系统定位EFT/ESD问题的方法

E1抗干扰开发系统,在设备内部仿真干扰的过程。能采用不同的方式,向电子模块直接注入干扰电流、电场和磁场,以定位电路板上的电磁薄弱点,理解耦合机理,并完成最优化的设计修改。

E1抗干扰开发系统不能按照某个标准进行兼容性测试。所以建议先对被测物进行标准的抗干扰测试,然后对可能的故障原因进行分析,再利用E1来找出更多的故障原因,并利用E1在产品开发场地进行设计修改的评估。

测量的目的是再现在标准抗干扰测试时的功能故障,从而确认和评估干扰被耦合入和耦合出的路径。

使用E1抗干扰开发系统,测量和定位EFT/ESD问题的一般步骤为:

1.故障粗略定位

检查EUT的各个电路模块,例如整块PCB、PCB间的互联电缆、PCB内的电路功能模块等。

取EUT的一块PCB或者一部分电路,对该模块的GND直接注入干扰:

* 两极连接方式注入干扰:

把SGZ21信号源的两个输出,分别连接到电路模块的GND上,判断是否是磁场敏感。如果在这种方式下,EUT出现期望的功能故障,说明在这两个GND节点之间存在的干扰电流路径周围,存在对磁场敏感的敏感点。

* 单极连接方式注入干扰:

把SGZ21信号源的其中一个输出接到电路模块的GND上,另一个输出端接到EUT的机箱(可以用电场场源模拟机箱),判断是否是电场敏感。如果单极连接期间出现功能故障,可能是:

电场:直接由EUT和场源探头间引起的故障;

磁场:流入电场的电流产生磁场,磁场被耦合到信号环路上,导致出现故障。

区分办法:

在EUT的GND和附近的金属物体之间建立一个很短的低阻抗的连接,从而消除电场的影响,如果不再出现那个已知的功能故障,就说明,那个已知的功能故障是由电场引起的。否则,这个故障可能是磁场引起的。

2.测量干扰电流路径

通过"故障粗略定位",把敏感点位置进行了粗略的定位,同时确定了电路敏感的性质(磁场敏感或者电场敏感)。使用瞬态电磁场探头,能测量EUT内部突发磁场的相对强度,并可以测量出干扰电流的流向。利用瞬态磁场探头测量时,能帮助你发现:

a. EUT内哪里存在突发磁场?

b. EUT内部的干扰电流是怎么流的?

c. 干扰电流有没有流入集成电路的输入和输出?

d. 旁路电容有什么影响,应该采用多大容值的电容?

e. 屏蔽连接的长度是如何影响旁路电流的?

3.精确定位敏感点

在把故障定位到模块并测量出电流路径之后,使用场源,能对敏感点进行精确定位:

首先是根据前面的测量结果来选择场源,决定使用磁场场源或者电场场源。

再依据测量到的"电流路径",沿着干扰电流方向的路径,使用相应的场源对EUT注入干扰。E1抗干扰开发系统配备了不同分辨率的9种场源,选择场源时,从大面积到小面积,选择强度时,探头由远到近慢慢靠近EUT,从而最终确定敏感点的位置。

4.评估电路修改有效性

找出电路内部存在的敏感点之后,开发人员会进行电路修改以改善EUT的抗干扰性能。为此,E1抗干扰开发系统,使用了一套"脉冲率测量法"的技术,让我们能对电路修改的有效性进行快速的评估。脉冲率测量法需要使用SGZ21发生器和传感器。

SGZ21产生如图6所示的,输出脉冲无序的,峰值电平呈平均分布的脉冲信号,这样就不需要发生器和计数器之间的同步。

例如,用放在EUT内部的传感器来监视敏感的信号线,一旦检测到这根信号线上有干扰,就会发出一个光脉冲。SGZ21上的计数器对这些光脉冲进行计数。在一个周期信号(1秒钟)序列期间检测到的计数值,代表着干扰门限所处的位置,即EUT的敏感度。

图6中,如果在一个周期脉冲序列里检测到11个脉冲,则干扰门限是u1,意味着注入电压为u1的突发干扰,本区域就会遭受干扰;

如果检测到的是3个脉冲,则干扰门限是u3。

检测到的脉冲数越少,表明模块设计得越好。

测量滤波器的滤波波形是一个非常典型的应用:把SGZ21产生的干扰电流注入到EUT,S31传感器测量EUT上受干扰的线上的信号,在SGZ21计数器上可以读到计数值,修改滤波器后,再次测量。两次测量结果的对比,就可以很清楚地告诉你,你的设计修改是否有效。

图6 SGZ21的脉冲序列

5.实时监视EUT工作状态

在抗干扰测试时,尽可能快地明确地发现EUT内的功能故障,是非常重要和关键的。然而,从外界来观察的话,EUT故障经常是不可见的,或者过一段时间才能发现。例如,EUT里的处理器,已经死机了,但是显示的还是正常的状态,甚至显示器上显示的也是正常的信息。

为了进行有效的故障定位,有必要使用S31传感器来提供与EUT功能有关的信息,例如用S31去监视看门狗电路的后置触发信号、片选信号等,以监视EUT的工作状态。SGZ21上的脉冲计数器可以监视,并判断设备是否在正常工作。你也可以把S31的光纤输出连接到光纤接收器,光纤接收器把S31送来的光信号变为电信号,再连接到示波器上进行观察和分析。

总线系统或者接口上的数据流,往往能反映系统的操作状态。但是通过示波器或者逻辑分析仪来监视是很浪费时间的,而且成本很高。采用SGZ21的计数器来监视数据流,是一个快速的方法。由于数据的内容会改变,而且计数器和数据包是不同步的,所以计数器上的值是会变化的。尽管如此,计数器上的值,还是能体现出EUT处于不同的工作状态。这样工程师就可以通过计数器显示的结果来判断设备的工作状态。例如在EUT复位后重新启动时记录的值,就是代表了EUT当前的工作状态。这样,工程师就能在抗干扰测量中发现EUT是否复位了,还是在传输数据时经常要重新发送,或者类似的由干扰引起的其他问题。

如果干扰脉冲正好出现在EUT的程序中要求严格的阶段(例如正在通过接口进行数据传输),就可能出现功能故障。出现功能故障的频繁程度,取决于EUT的结构。因此我们必须在适当的电压电平上测量足够长的时间,确保EUT不会产生功能故障。这种方法,是利用EUT出现故障作为敏感度的参考依据,在实际调试中需要花费大量精力和时间。

如果在EUT内部某个位置安装一个传感器,传感器的干扰门限是和时间无关的,我们可以利用传感器的计数值,作为敏感度的参考依据。这样的话,就不需要进行长时间的测量。这种方法特别适合于评估滤波器、屏蔽以及旁路的效果。

在实际工作中,电路内部的IC和传感器对快速干扰的敏感程度是不同的。所以可能会出现在干扰电压增加时,EUT先被干扰了,而传感器还没有被干扰到,或者相反的情况。这时,需要建立一个EUT干扰门限和传感器干扰门限的关系,如果在EUT上仅仅修改屏蔽或者滤波,则这种相对的关系会保持不变。传感器干扰门限的改进,也意味着提高了EUT的抗干扰能力。

本文小结

对于EFT/ESD等突发的、高压的、宽带的干扰,传统上难以测量,如果电子产品出现EFT/ESD问题,工程师只能凭经验去解决问题。E1抗干扰开发系统,给工程师一个全新的测量概念,能快速定位电路存在的敏感点,并通过设计修改,能以最低的成本让被测物通过相关的电磁兼容标准测试。

关键字:突发  干扰  通信  耦合 引用地址:EFT/ESD问题的测量和定位

上一篇:一种智能型兆欧表的设计
下一篇:一种新型数字温度测量电路的设计及实现

推荐阅读最新更新时间:2024-05-13 18:11

4G到5G,不仅仅差了一个G
近日,我国通讯事业有消息称4G时代即将淘汰,5G时代即将来袭。下面就随网络通信小编一起来了解一下相关内容吧。 4G到5G,不仅仅差了一个G 都说4G改变了人们的生活,如果按照这样的说法,那么5G将会改变整个社会。5G对于世界的改变力度将等同于电力一样,它将会连接所有人、所有事物,并实现最后一公里的无限连接。 什么是5G呢? 5G就是第五代移动网络。有一个概念——使用“毫米”级的波长(mmWave,也称作“毫米波”)。打个比方路由器使用的“2.4 GHz”也是频率,意思是通过2.4 GHz的频率段传递信息。毫米波对应的频率段大概是30 GHz到300 GHz。也就是说5G通过30 GHz到300 GHz的频率段传递信息。
[网络通信]
通信基站越近辐射越大?中国电信科普真相解密
辐射一般分为两种:电离辐射和非电离辐射。电离辐射是由直接或间接的电离粒子或二者混合组成的辐射,它会破坏DNA的结构,从而影响身体健康。   非电离辐射是指能量比较低,并不能使物质原子或分子产生电离的辐射,通常对身体无害。   今天,中国电信官方微博介绍了关于“辐射”方面的认知误区。   误区一:通信基站多,辐射一定很大?   事实上,通信基站的辐射量还没有很多家用电器辐射大。且通信基站天线的辐射覆盖面积较广,与人体的接触距离较远,产生的影响也很小。   另外,通信基站数量越多,手机通话效果就越好,手机和基站之间产生的电磁辐射反而越小。   误区二:离通信基站越近,辐射越大?   距离基站近不代表辐射大,基站的电磁辐射主要来自
[手机便携]
STM32 学习笔记--SPI通信配置
SPI时序 SPI时序图如下: STM32做为主机设计SPI时序一般选用CPOL=1/CPHA=1; SPI通信配置 1、时钟使能。GPIO时钟使能RCC- APB2ENR,SPI时钟使能RCC- APB2ENR设置。 (为什么还要连接GPIO时钟,参见STM32参考手册8.1.4节。手册上这么说的:对于复用输出功能,端口必须配置成复用功能输出模式(推挽或开漏)。) 2、配置GPIO工作模式。配置GPIO片选,由软件管理(即自定义引脚),推挽输出,上拉; 配置SPI引脚SCK、MOSI、MISO所用到的引脚为复用功能;GPIOX- CR1 GPIOX- ODR; 3、SPI设置工作模式。通过配置SPIx- CR1来设置SPI
[单片机]
STM32 学习笔记--SPI<font color='red'>通信</font>配置
OWICELLS项目利用可见光通信测试宝马机器人工装
据外媒报道,弗劳恩霍夫通讯技术研究所(Research institute Fraunhofer HHI)率先研发可见光通信(LiFi),该机构在宝马的慕尼黑工厂进行期末专题报告时宣布,其已成功完成OWICELLS项目,后者是由德国联邦教育与研究部提供资金(BMBF-funded)。 该项目利用快速光纤无线技术替代有线现场总线或常见的无线电方案,旨在研发更为灵活的制造单元(manufacturing cells),并将其用于汽车工程设计领域内。 该公司还利用一个移动式机器人演示了可见光通信技术,该机器人可执行常规的零部件焊接、移动及测试等常规生产工艺,上述操作均在5x5平方米的制造单元内完成。该项功能强大的光纤无线传输的技术基础在
[机器人]
通信开关电源冷却方式对性能和使用寿命的影响
一、温度对通信开关电源性能和寿命的影响   通信开关电源的主要部件是高频开关整流器,它是伴随功率电子学理论和技术及功率电子器件的发展而逐渐发展成熟的。采用软开关技术的整流器,功耗变得更小,温度更低,体积和重量都有大幅度下降,整体质量和可靠性不断提高。但是每当环境温度升高10℃时,主要功率元件的寿命减少50%。出现这样寿命迅速下降的原因都是由于温度的变化。由各种微观和宏观机械应力集中所导致的疲劳失效,铁磁性材料及其他零部件运行时在交变应力持续作用下,将萌生多种类型的微观内部缺陷。因此保证设备的有效散热,是保证设备可靠性和寿命的必要条件。   1、 工作温度与功率电子组件的可靠性和寿命的关系。   电源是一种电能转换设备,在转换
[电源管理]
单片机共享片外存储器及其与微机通信的方法
1 板间共享存储器的硬件接口电路和软件 控制 流程 1.1 信号 处理板硬件接口电路 基于DSP的信号处理板可以根据应用要求运行许多信号处理算法,如信号预处理、目标识别与跟踪定位、Kalman滤波等。待处理的原始信号 数据 通过板间 通信 从数据采集板获得。这里采用板间共享存储器的方法来完成数据交换,DSP既可以从共享存储器读取采集数据,也可以把处理结果(如新的程控放大倍数值,跟踪定位结果等)写到共享存储器中供MCU读取。 TMS320C32有一个双向串行口,可以设置每帧同时收发8/16/24/32位数据,同步时钟可以由内部串口定时器产生或由外部输入。通过设置串口全局控制寄存器来控制串口的总体功能和工作模式;通过
[应用]
兰州第五代移动通信技术2020年实现商用
  5月17日,记者从甘肃移动召开的“绚丽丝路、智创未来”——中国移动 5G (第五代移动通信技术,下同)和窄带物联网(NB-IoT)与数字甘肃峰会上了解到,作为“一带一路”战略的重要门户城市兰州已经获批成为全国首批 5G 规模组网建设及应用示范城市,甘肃移动已在兰州新区和有业务应用的热点区域开展 5G 网络建设,并在2020年实现商用。这对推动兰州5G网络建设走在全国前列、提升兰州城市形象和影响力具有十分重要的意义。下面就随手机便携小编一起来了解一下相关内容吧。 市民戴VR(虚拟现实技术)头盔体验5G(第五代移动通信技术)带来的变化   5G时代来了,将为人们的生活带来哪些改变?峰会一个吸引眼球的地方就是现场的5G和物联
[手机便携]
小广播
最新应用文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 安防电子 医疗电子 工业控制

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved