模块化逆变电源的设计与应用

发布者:知者如渊最新更新时间:2006-05-07 来源: 电源技术应用 手机看文章 扫描二维码
随时随地手机看文章

    摘要:讨论模块化逆变电源的应用场合及设计特点,并以某定向陀螺用的逆变电源为例,介绍了模块化逆变电源的设计过程。

    关键词:模块化逆变电源  VICOR模块  查表法  规则采样Ⅱ法  SPWM  PAM

1 引言

目前,逆变技术已在国民经济的各个领域中得到了极其广泛的应用,国内外许多公司已能生产技术成熟的标准逆变电源,这些产品实现的功能较多,性能较好、可适应较复杂的负载情况,但控制方案较复杂、体积较大、价格昂贵,适于实验室、车间的集中供电。在逆变技术的进一步普及应用中,越来越多的产品、设备要求逆变电源象直流电源一样模块化,并成为该产品、设备的一部分。通常在这种场合对逆变电源要求容量较小、负载单一、并控制体积和成本,显然再采用标准逆变电源的方案就不合适了,这需要仔细考虑系统方案,简化控制,在保证性能指标的同时,减小体积,降低成本。

本文以某新型鱼雷定向陀螺用的模块化逆变电源为例,介绍模块化逆变电源的设计与应用情况。本例的负载为感性,输出电压有个切换过程,在要求输出电压固定的场合,去掉电压切换部分即可。

本模块电源为三相400Hz逆变电源,24VDC输入,要求输出电压在通电30s内为68V,此时负载电流为3A;30s后,陀螺的起动过程结束,要求输出电压无间断地切换为36V,并提供1A负载电流,稳压精度2%,输入输出隔离。模块外形尺寸不大于120mm×130mm×50mm。

2 系统设计

在模块电源的研发过程中,系统设计直接决定产品的最终性能。现采用以下方案构成SPWM型逆变器,系统框图见图1。

2.1 控制方案

模块化逆变电源的负载一般已知,其特性也不复杂,没有进行实时计算的必要,因此采用查表法是很合适的,将控制波形的SPWM数据事先计算出来,存入ROM中,这样可使控制部分得到最大程度的简化。调节直流母线电压可以进行输出电压的控制,虽然这种方式不利于三相分相控制并有一定滞后,在大容量逆变器中不常见,但在三相平衡负载场合,是完全可以满足要求的。所以,本系统实际采用了PWM、PAM两种控制方式。控制部分是系统的关键,本文将做详细介绍。

2.2 主电路设计

主电路需将24VDC输入变换为较高的、可调节的直流母线电压,选择性能优良的DC/DC模块,可缩短设计周期、提高产品可靠性。

DC/DC模块选用VICOR产品。该产品采用了ZCS/ZVS(零电流/电压开关)技术,突出优点是高效率、高功率密度、高可靠性、低电磁干扰;同时,可以利用其I/O隔离的特性实现系统的隔离。若使用两只24V变48V、输出150W的VICOR模块,输入并联,输出串联,可获得96V的直流母线电压。

(1)检验功率不计各处损耗,最大输出功率为

68×3=204VA

两只模块可输出功率达300W,可以满足要求。

(2)检验电压正常工作输出36V时,若直流利用率为0.7,调制度为最大值1,则需直流电压

36/0.7=51.5V

输出68V时,若直流利用率仍为0.7,调制度为最大值1,则需直流电压

68/0.7=97V

这是空载时所需的直流电压,当带重载时,因线路阻抗和系统输出阻抗的存在,所需的直流母线电压更高,所以必须采取措施提高直流利用率。计算SPWM数据时,可适当地过调制,并在电路中稍微加大滤波,就可达到目的。

逆变桥使用MOSFET构成三相逆变全桥,滤波网络中的电容采用三角形连接以加强滤波作用。

2.3 保护与控制电源

当有异常情况出现时,有两种方法切断输出,一是封锁控制数据,如选择ROM数据全为零的空页,此法方便快速;二是断开直流母线电压,此法有利于负载的安全,这里选择后者。VICOR模块的GATEIN端是其功率提升同步端,也是该模块的使能端,拉低该端电压即可关闭模块(Isink=6mA),它以-IN端电位为基准,故检测的过流、过压信号均须以光耦与之隔离。

控制部分已相当简单,电源功率很小,采用线性三端稳压器即可。除简便外,还有可靠、电磁干扰小的优点。固定一只模块的输出电压以获得控制电源,而调节另一只来控制系统输出电压的幅值。

3 PWM波形控制

在ROM中的PWM数据是离线计算的,灵活性较大。采用SPWM方法之一的规则采样Ⅱ法计算数据,可比较准确地得到开关器件的导通、关断时间,其原理误差与存储数据时取整带来的误差相比可以忽略。计算程序的入口参数主要有三个:载波频率fc、调制频率fm和调制度M,其中调制度代表预期的输出幅值。输出电压切换前后的幅值相差很大,不能使用一个调制度,所以在ROM中存储两组数据(每组2k字节),通过控制高位地址线实现电压切换。前面2.2节述及,起动阶段输出68V时,需适当的过调制,此时,SPWM就近似为梯形波比较调制,使直流利用率提高;而正常工作输出36V时,直流母线电压绰绰有余,调制度较低,谐波含量将很少。

规则采样Ⅱ法的原理如图2所示,在三角载波的负峰值时对正弦调制波采样,得到图中E点,采样电压为urE=MsinωCtE。E点水平线在三角波上截得A、B两点,两点间的时间就作为SPWM波在该载波周期的脉宽时间t2。由相似三角形的比例关系可得下式:

脉宽时间(1)

间隙时间(2)

Tc为三角载波的周期。利用式(1)可以很快地计算出各个脉冲宽度,而两个脉冲之间的间隙时间为前一脉冲的t3与后一脉冲的t1之和。

图3是产生PWM数据的程序流程:

程序中,计算某相数据的子程序是三相公用的。其中一个参数是正弦调制波相位,改变这个参数可分别计算出A、B、C数据,并且可以补偿因滤波元件参数不一致而导致的三相不平衡。

计算完各开关点时间后,将时间转换为0、1位串的字节长度,这个过程要进行四舍五入,修正值初值为0.5。但四舍五入一般会带来数字节的误差,为了保证总的字节数成整k,需要以逐次逼近方式修改修正值。

此部分电路中,一555多谐振荡器产生819.2kHz时钟,经12位计数器进行地址变换,使存储于ROM中的PWM数据周期性地输出,再由专用驱动芯片IR2110驱动MOSFET三相全桥进行逆变。

4 输出电压控制

介绍这部分前,需先对VICOR模块的调压原理进行了解,参见图4。

VICOR模块的电压调节端TRIM同时也是模块内部误差放大器的电压给定端,经一个10kΩ电阻与2.5V基准串联,此端悬空时,误差放大器的给定电压为2.5V,模块输出额定电压。由TRIM端外接电阻到-OUT端与10kΩ电阻对2.5V分压,使误差放大器的给定电压降低,模块的输出电压即被按比例地调低;由+OUT端外接电阻到TRIM端与10kΩ电阻对输出电压分压,输出电压亦被按比例地调高。模块的输出电压调节范围是额定值的5%到110%。值得注意的是,若TRIM端电压过高,将导致模块的过压保护动作。

使模块的电压调节端TRIM随着系统输出电压有效值的变化而反向变化,即可构成负反馈闭环回路。可以看出,若将系统抽象为一闭环系统U(s)=U0×C(s)/F(s),模块内的2.5V基准也是系统的给定值U0,负反馈环路可抽象为反馈通道传递函数F(s)。系统有68V、36V两次稳压过程,只需在切换数据页的同时相应改变F(s)中的反馈系数即可。

此部分的电路参见图5。

输出的三相电压经整流滤波后,在电位器RP1的滑臂上取得反馈电压,该电压经光耦N1隔离、反相后送到VICOR模块的TRIM端,即构成了负反馈环。这里光耦三极管等效为一个接在TRIM和-OUT端的受控可变电阻,这样有效地防止了TRIM端上的反馈电压过高。

通电后,首先+15V经R对C充电,充电时间常数由二者的乘积决定。当C上的电压不超过稳压管DZ稳压值加0.7V时,T1不导通,集电极输出为高电平,选中ROM里存储68V数据的页面,同时,三极管T2、达林顿光耦N2导通,电位器RP2与RP1并联,这个状态对应于起动阶段输出68V高电压;当C上的电压超过稳压管稳压值加0.7V后,T1导通,集电极输出为低电平,选中存储36V数据的页面,同时T2、N2截止,RP2支路断开,RP1滑臂上的反馈电压增大,系统反馈系数也变大,输出将降低,这时对应于正常工作阶段输出36V。

这里,用PWM数据的调制度大致决定输出电压幅度。确定此参数时,断开负反馈环,VICOR模块输出额定电压,系统带满载并能输出预定电压时的调制度,就是合适的取值,经实验,68V、36V的调制度分别取为1.50、0.50。用电位器RP1、RP2可对输出电压在一定范围内微调。输出36V时,仅RP1起作用,故应先调定RP1,再用RP2对68V调节。

取样电阻值的选择很重要,选得过小,光耦会出现饱和情况,系统就会振荡;选得太大,光耦不足以导通,负反馈环起不到调节作用。

5 产品性能和应用情况

研制的电源能满足外形尺寸要求,能以简洁的电路实现并完全达到各性能参数的关键在于VICOR模块与逆变部分的巧妙配合。以下是产品的实测数据:

(1)输出电压:

稳压精度——30s内:空载:69.0V满载:67.5V

30s后:空载:36.3V满载:36.0V

频率——开机:401.5Hz带载一小时:398.5Hz

THD——输出68V空载:0.5%80%负载:3%

输出36V空载:0.2%80%负载:0.5%

三相不平衡度:<2%

(2)最大输出功率:210VA

(3)效率:65%(满载)

(4)输入电压:(21~32)VDC

本模块化逆变电源试制成功后,除用于该型鱼雷外,还用于某型雷达及某研究所的航空传感器测试平台等场合,用户反映良好。

引用地址:模块化逆变电源的设计与应用

上一篇:PWM逆变器死区效应的补偿
下一篇:低电压输入DC/AC变换器模块

热门资源推荐
热门放大器推荐
    Error

    An error occurred.

    Sorry, the page you are looking for is currently unavailable.
    Please try again later.

    If you are the system administrator of this resource then you should check the error log for details.

    Faithfully yours, OpenResty.

小广播
最新应用文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 安防电子 医疗电子 工业控制

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved