基于实时时钟芯片X1227的电源控制器设计

发布者:SerendipityJoy最新更新时间:2006-10-31 关键字:RTC  存储  监控  频率 手机看文章 扫描二维码
随时随地手机看文章

引言

X1228是美国XICOR公司最新推出的实时时钟(RTC)芯片。与其它RTC芯片相比,X1228除有基本的时钟和报警功能外,还有4K位E2PROM存储器和复位输出、电压监控、看门狗定时、频率输出等功能。

X1228可以准确地用秒、分、时、日、星期、月、年来显示时间和日期,具有世纪字节,解决了两千年问题,自动实现闰年调整;有2路报警,可设置为按秒、分、时、日、月和星期任意组合的定时报警;还有1个可编程的频率输出引脚(PHZ),用于输出一个固定频率的方波信号;内部的4K位E2PROM存储器,可用于存储用户的设置参数或其它数据,其内容在电源失效时不会丢失;采用I2C总线与单片机接口,一次可传送多个字节的数据,数据传送的速率为400kHz;内部有电源监控电源监控电路,用于监测电源电压,并能在上电和掉电时输出复位信号,片内的看门狗定时器可编程为3个超时时间和关闭,还提供一个备用电源输入引脚(VBACK),接一电池作为备用电源,可在主电源(VCC)失效时保证芯片正常工作和时钟的连续运行。X1228因其计时准确、体积小、功能强,且与单片机接口方便、性价比高,在我们研制的开放式实验室管理系统电源控制器中得到了有效的应用。

图1 X1228内部结构框图

1 X1228的内部结构及工作原理

实时时钟芯片X1228的内部结构如图1所示,按功能基本分为实时时钟及报警、存储器和复位监控电路3个主要部分。

1.1 实时时钟及报警

X1228对时钟和报警的访问和设置都是通过时钟/控制寄存器CCR来实现的。CCR分为五个部分:

①报警寄存器0(Alarm 0)为8字节,地址0000H~0007H,非易失性E2PROM存储器;

②报警寄存器1(Alarm 1)为8字节,地址0008~000FH,非易失性E2PROM存储器;

③控制寄存器(Control)为4字节,地址0010H~0013H,非易失性E2PROM存储器;

④实时时钟(RTC)为8字节,地址0030H~0037H,易失性RAM存储器;

⑤状态寄存器(Status)为1字节,地址为003FH,易失性RAM存储器。

实时时钟(RTC)外部仅使用1个32.768kHz晶体来保持年、月、星期、日、时、分和秒的精确的内部表示。启动读命令并指定对应于RTC寄存器的地址可以读RTC,也可以通过写RTC寄存器来设置时间和日期。模拟微调寄存器ATR(低6位)用来调整X1和X2引脚间的片内负载电容,为5~39.5pF,这将使晶体选择有较大的余地。数字微调寄存器DTR(低3位)用来调整RTC的误差,达到长时间的高精度。

  两组报警寄存器的结构与内容和RTC寄存器相同,只是增加了使能位(在MSB位)。通过使能位和实时寄存器的设置,可以确定报警时间。例如:在表1中,通过把EDWn、EHRn、EMNn使能位置“1”,并把DWAn、HRAn、MNAn报警警察寄存器置为星期三8:00AM,即把X1228设置为每星期三8:00AM报警。当把EHRn、EMNn使能位置“1”,并把HRAn、MNAn报警寄存器置为9:15PM时,即把X1228设置为每天9:15PM报警。设置EMOn,并结合其它使能位和特定的报警时间,用户可以把X1228设置为每年同样的时间报警。控制寄存器INT中位IM为中断方式位,“0”为中断方式,“1”为脉冲方式;位AL1E和AL0E分别用来使能报警中断信号IRQ的输出;位FO1和FO0为可编程频率输出控制位,用来选择PHZ引脚上的振荡频率输出。

表1 时钟/控制寄存器CCR映像表

地址 名称 D7 D6 D5 D4 D3 D2 D1 D0 范围
003FH SR BAT AL1 AL0 0 0 RWEL WEL RTCF  
0037H Y2K 0 0 Y2K21 Y2K20 Y2K13 0 0 Y2K10 19/20
0036H DW 0 0 0 0 0 DY2 DY1 DY0 0~6
0035H YR Y23 Y22 Y21 Y20 Y13 Y12 Y11 Y10 0~99
0034H MO 0 0 0 G20 G3 G12 G11 G10 1~12
0033H DT 0 0 D21 D20 D13 D12 D11 D10 1~31
0032H HR T24 0 H21 H20 H13 H12 H11 H10 0~23
0031H MN 0 M22 M21 M20 M13 M12 M11 M10 0~59
0030H SC 0 S22 S21 S20 S13 S12 S11 S10 0~59
0013H DTR 0 0 0 0 0 DTR2 DTR1 DTR0  
0012H ATR 0 0 ATR5 ATR4 ATR3 ATR2 ATR1 ATR0  
0011H INT IM AL1E AL0E F01 F00 X X X  
0010H BL BP2 BP1 BP0 WD1 WD0 0 0 0  
000FH Y2K1 0 0 A1Y2K21 A1Y2K20 A1Y2K13 0 0 A1Y2K10 19/20
000EH DWA1 EDW1 0 0 0 0 DY2 DY1 DY0 0~6
000DH 未使用,默认为RTC年字节(YR)
000CH MOA1 EMO1 0 0 A1G20 A1G13 A1G12 A1G11 A1G10 1~12
000BH DTA1 EDT1 0 A1D21 A1D20 A1D13 A1D12 A1D11 A1D10 1~31
000AH HRA1 EHR1 0 A1H21 A1H20 A1H13 A1H12 A1H11 A1H10 0~23
0009H MNA1 EMN1 A1M22 A1M21 A1M20 A1M13 A1M12 A1M11 A1M10 0~59
0008H SCA1 ESC1 A1S22 A1S21 A1S20 A1S13 A1S12 A1S11 A1S10 0~59
0007H Y2K0 0 0 A0Y2K21 A0Y2K20 A0Y2K13 0 0 A0Y2K10 19/20
0006H DWA0 EDW0 0 0 0 0 DY2 DY1 DY0 0~6
0005H 未使用,默认为RTC年字节(YR)
0004H MOA0 EMO0 0 0 A0G20 A0G13 A0G12 A0G11 A0G10 1~12
0003H DTA0 EDT0 0 A0D21 A0D20 A0D13 A0D12 A0D11 A0D10 1~31
0002H HRA0 EHR0 0 A0H21 A0H20 A0M13 A0D12 A0D11 A0M10 0~23
0001H MNA0 EMN0 A0M22 A0M21 A0M20 A0M13 A0M12 A0M11 A0M10 0~59
0000H SCA0 ESC0 A0S22 A0S21 A0S20 A0S13 A0S12 A0S11 A0S10 0~59

状态寄存器SR中位BAT为“1”,表示由电池VBACK供电,硬件置位/复位;位AL1、AL0为报警指示位,“1”为发生报警,状态寄存器读操作复位读标志;位RWEL为寄存器写使能锁存,位WEL为写使能锁存,上电时均为“0”,禁止状态。注意:要对CCR或存储器进行任何非易失性写操作,须首先写“02H”至SR,将WEL位置“1”,其次写“06H”至SR,将RWEL和WEL都置“1”,然后才能写实际数据到CCR或存储器。

1.2 复位监控电路与看门狗定时器

X1228电源控制电路接收从Vcc和VBACK引脚输入的电源,当Vcc

看门狗定时器可通过向BL寄存器中WD1、WD0这两位的“写入”,设置为3种不同超时间隔或不工作,“00”为1.75s,“01”为750ms,“10”为250ms,“11”为不工作。看门狗启动时,必须在规定间隔内对它进行刷新,方法是在SCL线为高时SDA线产生下降沿。如果看门狗在规定间隔内没有被刷新,则RESET脚变为有效。注意:如果使用开始条件来刷新看门狗定时器,必须跟着一个结束条件以复位X1228。

1.3 存储器访问

X1228支持I2C总线协议,与CPU的连接很简单。如图2所示,AT89C51为主器件,X1228为从器件。SCL为串行移位时钟输入,P3.4接SCL模拟时钟信号;SDA为串行数据输入输出,P3.5与SDA相连以实现AT89C51与X1229的数据通信。X1228工作在中断方式,由IRO引脚定时发出中断信号,作为AT89C51 INT1的输入信号。

主器件在发出开始条件后必须接着输出一个地址字节。从地址字节的高4位是标识位,规定了访问E2PROM阵列还是访问CCR,“1010”表示访问E2PROM阵列,“1101”表示访问CCR;从地址字节的位3~位1是选择位(I2C器件级联时使用),X1228这3位总是“111”;从地址字节的最后一位R/W位定义操作类型。

块保护控制寄存器BL中位BP2、BP1、BP0决定了E2PROM存储器阵列中哪些块是写保护的,“000”表示“无写保护”,“001”表示地址0180H~01FFH写保护,“010”表示地址0100H~01FFH写保护,“011”表示“全地址写保护”,“100”表示地址0000H~003FH(第1页)写保护,“101”表示地址0000H~007FH(前2页)写保护,“110”表示地址0000H~00FFH(前4页)写保护,“111”表示地址0000H~01FFH(前8页)写保护。

对X1228存储器的访问有随机读、顺序读、当前地址读和字节写、页写等,其操作均与标准I2C总线器件相同,在此不作重述。

2 X1228在电源控制器中的应用

为了充分利用实验室资源,让学生能够自主选择实验内容与时间,从而激发学生积极参与科学实验的兴趣,提高分析问题、解决问题的能力,同时也为了缓解近年来高校扩招对实验室的压力,实现高校部分实验室的开放式管理势在必行。我们研制的开放式实验室管理系统,再配上有经验的指导教师精心制作的实验教学课件,为实验室的无人值守化管理提供了物质基础。该开放式实验室管理系统由一个管理中心和一个门禁控制器及若干个实验组电源控制器组成,系统框图如图3所示。学生进入开放式实验室做实验,必须先刷卡,得到允许后方可进入。若实验时间超过预定时间(前10分钟发提示警告信息),则实验组仪器设备的供电会自动切断。

管理中心由1台计算机、报表打印机和管理软件组成。完成的功能有:①IC卡的发放、实验室仪器设备配置情况和实验安排情况预置;②通过门禁控制器获取实验学生的有关信息,根据存储在机内的仪器设备使用配置情况及预置的实验安排情况,决策该学生当前是否能参与实验并分配实验组号;③向门禁控制器回发信息;④若允许学生进入实验室,则发指令至相应的实验组电源控制器,以便及时为该组仪器设备供电;⑤对学生实验时间、仪器设备使用情况进行存储管理,为实验指导教师掌握学生实验情、实验技术人员进行仪器设备的维护维修提供依据;⑥各种报表输出。

门禁控制器主要负责:①对学生所持有的IC卡刷卡,以获取与实验有关的信息,通过RS485总线传输至上位机,以决定是否允许该学生进入实验室;②接收上位机发来的允许否信息,通过LCD显示器显示并执行;③学生实验完毕,需再次刷卡,并通过门禁控制器所携带的小键盘,对实验组仪器则认为该实验在规定时间内未完成,需重做。

实验组电源控制器主要是接收上位机指令,控制每个实验组仪器设备的供电情况,并在预定实验结束时间的前10分钟向学生发提示报警信息。

在实验组电源控制器中,我们采用了AT89C51单片机控制实时时钟芯片X1228(如图2)来实现对每个实验组仪器设备的供电情况定时控制,采用OCMJ2X8的LCD显示模块显示实时时间。AT89C51从串行口接收来自PC的2字节命令,由P1.5输出高电平,通过一只固态继电器(SSR)SAP4010来接通220V交流供电电路;接收8字节BCD码,写入X1228的RTC寄存器,对X1228进行校时;从串行口接收8字节写入Alarm0来设置X1228的报警输出,在单片机的外中断1服务程序中,通过P3.2口接的1只有源讯响器,在预定实验结束时间的前10分钟向学生发提示报警信息;实验时间到,P1.5输出高电平,通过SAP4010切断220V交供电电流。管理中心上位机与电源控制器之间采用MAX3082构成的RS485总线进行通信。因总线上允许最大节点数为256个,故完全能满足实际应用需要。

结语

在开放式实验室管理系统的电源控制器中,由于采用了I2C总线的实时时钟芯片X1228,它集成时时钟、报警输出、电源监控和看门狗定时器于一体,从而大大减小了系统成本和电路板空间。该电源控制器若稍做改进,也可广泛地应用地需要进行定时开关机的家用电器中

关键字:RTC  存储  监控  频率 引用地址:基于实时时钟芯片X1227的电源控制器设计

上一篇:满足AMD K8低功耗移动处理器规范的电源
下一篇:开关电源电磁干扰分析及抑制

推荐阅读最新更新时间:2024-05-13 18:15

初学PIC单片机--存储
初学PIC单片机--存储器 存储器可分为数据存储器(RAM)和程序寄存器(ROM或EEPROM)两种. 它是计算机的记忆装置,通过存储程序和数据,使单片机具有记忆能力. RAM用来存放临时数据或中间结果(掉电数据不保存) EEPROM用来存放程序或数据(单片机掉电后EEPROM中的数据/程序可长期保存) 特殊功能寄存器SFR (1)间接寻址寄存器INDF和FSR寄存器 (2)程序状态寄存器STATUS (3)程序计数器PC 1 GOTO跳转 2 堆栈(堆栈的操作遵循一种"后进先出"的规则,即最先进的数据最后出栈,最后进的数据最先出栈.) (4)端口寄存器PORTA---PORTE (5)选择寄器COPTIO
[单片机]
"速度与激情"高清监控下双码流回放技术
    今天的安防行业,已经进入所谓的大联网时代。许多企业特别是金融机构都已经建立了多级视频监控联网平台。利用遍布全国的网络,金融机构的总部可以随时调用各分支机构的监控录像。然而,在现实应用中,由于带宽的限制,许多企业在进行高清监控的情况下,就无法满足低网速下的远程调用需求。“速度与激情”在中国的安防行业似乎无法兼顾。鉴于这种情况,蓝色星际在国内率先推出了“双码流回放技术”,这种技术可实时导出高、低分辨率两种视频。即可满足低网速下的远程调用需求,又可保证高清视频的存储。这无疑为目前国内安防行业高清应用和远程管理提供了一种全新的解决方案。   成本与管理需求催生双码流回放   今天,利用网络远程观看高清录像已经成为一种常态。
[安防电子]
小尺寸,全集成—强型隔离单片电源监控IC发布
Allegro MicroSystems, LLC(以下简称Allegro)宣布推出一款完全集成的小尺寸电源监控IC ACS71020,具有增强型电压隔离功能。Allegro之前发布的ACS724和ACS711电流传感器IC通常用于具有互联网连接的电源插座和其他物联网设备。ACS71020在这些广受欢迎的IC基础上进一步改进,增加了电源检测功能,并且不再需要电源隔离元件,从而能够减低客户系统的成本和尺寸。 ACS71020基于Allegro创新的霍尔效应电流传感器技术,增加了线电压检测(电压电平 500 VRMS)和能够数字计算待测功率水平的专用计量引擎,因而可以使用与系统微处理器相同的电压为电源监控供电,无需数字隔离器或多个电源
[电源管理]
小尺寸,全集成—强型隔离单片电源<font color='red'>监控</font>IC发布
高速公路监控系统全面数字高清解决方案
  在高清 视频监控 技术逐渐完善的过程中,各种高清产品开始进入人们的眼帘,高清已成为未来安防监控领域技术、产品发展的方向之一。透过市场上品类繁多的高清产品,笔者认为,我们的目光应该更多地关注数字高清视频监控的整体 解决方案 和数字高清 监控系统 的应用。    一、何谓高清   高清其实就是指视频监控图像的清晰度更高。对于视频监控而言,图像清晰度是最关键的特性。图像越清晰,细节越明显,视觉效果就越好,智能分析等应用业务的准确度也越高。所以,图像清晰度是视频监控永恒的追求。   笔者认为,高清是一个标准,而不是一种概念。标准不仅仅意味着它是一个像素数据或者是一个图像的画面比例,它应该是一个整体的解决方案,它要求从前端摄像到中端
[安防电子]
高速逻辑分析仪探测
      在过去几十年中,数字设计人员一直依赖逻辑分析仪,作为系统检验的主要工具。近年来,时钟速率的加快,已经迫使设计人员考虑系统所有部分的信号完整性,包括测试能力。逻辑分析仪探头不再能够任意连接到系统上,就能够保证成功,而是必须考察探头位置、负荷及与传输线的邻近程度等因素。本文考察了在探测高速数字系统时设计人员遇到的部分常见问题,另外本文还讨论了探头的负荷模型及探测位置的影响。最后,本文讨论了把探头连接到高速系统最常用的技术:短线探测和阻尼电阻器探测。    逻辑分析仪探头的负荷模型   任何类型的探头的目标都是尽可能对系统提供最小的电负荷。如果探头对系统性能的变动太大,那么探头将不能帮助设计人员检验
[测试测量]
基于嵌入式Linux的远程监控系统的设计
  1 引 言   单片机和微控制器在工业现场控制领域已得到广泛的应用,但这些控制系统通常采用RS232或RS485组网,作用距离短。如今,Internet飞速发展,已成为信息交流的重要渠道。而且,基于Web的B/S远程监控模式技术也越来越成熟。如果将这种模式应用于工业现场控制领域,则用户只要在有Internet接入的地方,就可以对工业现场设备进行远程监控。将其应用于家庭,则可以朝家电信息化迈出关键的一步。   上述系统的实现离不开嵌入式操作系统。后PC时代,随着嵌入式系统的广泛应用,嵌入式操作系统也越来越受到重视。嵌入式操作系统具有结构小巧、实时性强、稳定性高等特点。目前,商用嵌入式操作系统比较多,如Vxworks,QNX,N
[单片机]
基于嵌入式Linux的远程<font color='red'>监控</font>系统的设计
基于ARM微处理器的十回路智能配电监控单元的设计
0 引言 配电自动化技术正朝着数字化、智能化、网络化、多功能的方向飞速发展。本文以内含ARM7TDMI—STM CPU的微控制器LPC2132芯片作为系统主控制器,针对电力系统数据信号的采集和数据通信,以及电力系统状态监测为研究主题,研究设计出了一种具备智能配电,并可同时监控十个用户回路的终端控制单元,其具备测量各回路中有功功率、无功功率、能量、电压、电流、功率因数等电力参数功能。 1 电力参量的测量原理 对称三相电源通常由三个频率相同、幅值相等和初相角为1200的正弦电压源按一定方式连接而成,三相信号可依次称为A、B、C相,记为uA、uB、uC,它们的瞬时表达式如下: 在交流电路中,电压与电流之间的相位差
[单片机]
基于ARM微处理器的十回路智能配电<font color='red'>监控</font>单元的设计
单片机的状态迁移与复位操作
本文以经典的80C51单片机为例,利用工作状态及其状态辽移的新概念、新观点和新方法,揭示一些单片机运作的内在规律,对于单片机学习者和应用开发者具有一定的启迪作用和实际意义。 1 单片机的工作状态及其状态迁移 80C51单片机的各种活动,可以描述成多个不同的工作状态或工作模式。这里利用笔者构思的一个单片机工作状态迁移图(如图1所示)来说明。不过,这里重点关注的是复位状态。 经过仔细分析之后,从图1中可以看出: ① 把单片机经历的所有生存状态归纳和描绘成5个状态--1个非工作状态(即无电状态)和4个工作状态。 ② 只有复位状态是一个暂态,其他均为稳态;并且每次单片机进入正常运行状态时,都要经历一次复位状态。 ③ 只有在正
[单片机]
小广播
最新应用文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 安防电子 医疗电子 工业控制

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved