噪声恒虚警处理电路的计算机仿真

发布者:SereneSerenity最新更新时间:2007-10-29 来源: 电子工程师关键字:门限  频率  扫描  输入 手机看文章 扫描二维码
随时随地手机看文章

0 引 言

雷达系统的信号检测是在各种噪声和杂波干扰的环境中进行的。视频的回波信号与噪声、杂波一起送到检测器,并在检测器对视频信号进行分级,即设置一个检测门限。如果信号超过该门限,就判决目标存在。显然,门限电平的选择是至关重要的。如图1所示。如果门限设置太高,本来可以检测的弱小目标将被丢失;如果门限设置太低,则虚警太多。由于噪声和杂波干扰具有不确定性,如果采用固定门限,虚警率将随噪声和杂波强度的变化而变化。由计算可知,噪声或杂波的平均电平提高1倍,虚警率将增大4个数量级。这将严重影响检测器的性能和计算机的工作。因此,必须采用自适应门限检测电路,进行恒虚警检测。采用恒虚警处理技术,能够连续地监视噪声或杂波平均电平的变化,及时调整检测门限电平,使其始终保持在最佳检测门限电平上,保持虚警率恒定。

检测器的工作环境中只有杂波时的恒虚警处理称为杂波恒虚警处理;检测器的工作环境中只有噪声时的恒虚警处理称为噪声恒虚警处理。多普勒雷达工作在高重复频率时,俯仰角大于0o,波束在自由空间扫描,没有杂波,只有噪声,属于噪声恒虚警处理。本文利用计算机仿真对单、双门限的噪声恒虚警处理进行了研究。

1 目标检测判决准则及恒虚警检测原理

雷达信号的检测都是以接收机的输出与某个门限电平相比较为基础,因此,可能会出现虚警和漏警两类错误。假设H0是接收机只有噪声的输入事件,H1是信号加噪声的输入事件。D1是认定H1为真的判决,D0是认定H0为真的判决。则虚警概率Pfa和漏警概率Pla为:

判决门限的确定与选择的最佳准则有关。在雷达信号检测中,因预先不知道目标出现的概率,也很难确定一次漏检所造成的损失,所以,通常选择的准则是保持某一规定的虚警概率下使漏警概率达到最小,或使正确检测概率达到最大。这就是纽曼一皮尔逊准则。

其决策可以写为:

式中:l (x)为似然比;λ实际上就是检测门限。

检测门限的选择一般是根据系统所要求的虚警概率来确定。雷达接收机视频输入的噪声主要由机内热噪声和潜在的人为干扰等组成,可以假设阻塞(噪声)干扰的带宽完全覆盖了被干扰雷达系统的带宽,这样就能按照对待热噪声的方法来处理。热噪声的特点是具有白色功率谱密度和高斯幅度概率密度,可以推导出它加到包络检波器输出的电压振幅| X(K)|服从瑞利分布,其概率密度函数为:



式中:σ为检波前高斯热噪声的均方值;r为检波器输出端噪声包络的振幅值。

由式(1),计算瑞利分布的期望为E(r)=

假设门限为VT,则超过门限VT的虚警概率为:



可见,虚警概率将随噪声的功率而变化。如果保持一定的虚警率Pfa,门限VT可表示为:

由式(4)可知,当噪声功率σ增大时,E(r)= 成比例增大,VT相应增大;同样,
当噪声功率σ减小时,VT相应减小。检测门限电平VT总是根据噪声电平的变化自动调整,即实现了雷达恒虚警。

2 恒虚警电路的计算机仿真

2.1 单门限噪声恒虚警处理

图2是采用MATLAB/simulink软件建立的单门限噪声恒虚警电路的仿真模型图。电路首先对噪声进行采样,然后计算噪声均值,再由噪声均值求出检测门限电平,最后检测电路根据该门限电平对信号进行判决检测。由于门限电平与噪声均值成正比,当噪声电平提高时,门限电平上升,从而保持虚警恒定。

噪声采样模块的作用是提取纯噪声,这里由乘法器完成该功能,乘法器的一端接躁声+信号,另一端接雷达休止区脉冲,保证选通的信号只有噪声而没有回波。均值计算模块用来计算噪声的均值,在simulink的DSP工具箱中有做好的模块。门限产生模块由噪声均值和给定的虚警概率按式(4)计算门限电平VT,门限检测模块完成判决功能,当信号电平超过VT时,输出目标标志。

图3是当噪声均方值为10、噪声采样间隔为10-5s、检测的虚警率设为10-5时,单门限恒虚警处理噪声与门限的关系图。图3表明,噪声电平除了在0.75 s时产生虚警,其余时问都没有超过门限电平,显然符合虚警率为10-5的要求。

2.2 双门限恒虚警处理

双门限噪声恒虚警电路的Simulink仿真模型见图4。与单门限恒虚警电路相比,多了1级门限判决,所以电路实现时增加了1级比较器和1级计数器。

经噪声采样后的纯噪声信号送到比较器,比较器的门限为一固定值V0,V0远低于噪声的平均电平,使较多的噪声信号能够通过比较器。过第1门限V0的噪声样本数由计数器计数,设为N0。此计数值与原采样噪声总样本个数Ⅳ相比的值N0/N代表虚警概率Pfa。根据瑞利噪声的概率分布可求得超过第1门限 V0时的概率PV0为:



均值计算模块由式(6)求出噪声平均电平σ。门限产生模块由求得的σ按VT=Kσ计算第2门限值,K为一常数,根据虚警多少可自行设置,即可进行人工干预:虚警太多时,提高K值;反之,减小K值。

图5是当第1门限V0=O.4 V、噪声均方值σ为10、噪声采样间隔为10-5s时,双门限恒虚警处理电路噪声与门限的关系图。图中分别绘出了K=5和K=6的检测门限曲线,当K=5时门限值约为5 V,此时在0.75 s有一虚警,而K=6时门限也相应提高到6,虚警消除。与图3相比,图5可以通过调整常数K值更加灵活地控制检测门限和虚警率大小。

图5 双门限噪声恒虚瞀处理门限与噪声的关系

由于第2门限(目标检测门限)VT与噪声电平均值成正比,也就是说,当噪声功率增大时,过门限V0的噪声样本个数增多,噪声平均电平升高,VT成比例增大;同样,当噪声功率减小时,VT相应减小。检测门限电平VT总是根据噪声电平的变化自动调整,使雷达输
出的虚警概率恒定。

3 结束语

采用单门限或双门限的噪声恒虚警处理方案,可使雷达在恒虚警率下进行目标检测。通过对检测门限的人工干预,可使超过门限的尖头噪声个数大大减少,改善雷达显示画面的噪声背景。由于检测门限能够跟随噪声电平自动调整,如果遇到敌方干扰机的噪声干扰,检测门限自动提高,要使干扰有效,就必须大大提高干扰机的输出功率,因此,恒虚警处理具有抗积极噪声干扰的作用。

关键字:门限  频率  扫描  输入 引用地址:噪声恒虚警处理电路的计算机仿真

上一篇:天线方向图自动测试系统的设计
下一篇:使用单片机实现GPRS通信小系统的研究

推荐阅读最新更新时间:2024-05-13 18:39

【单片机笔记】状态机效率地按键扫描、识别及检测方法
按键是人机交互最简单也是最廉价的方式之一,要实现一个或者多个按键的有效扫描并处理,这里附上我修改过的代码: 实现的代码主要包含有四个部分: 第一部分:按键的初始化部分 void Key_Configuration(void) { return; } 这里需要根据所使用的IC来做不同的配置方式,我使用的是51内核,在初始化的过程I/O口默认做了准双向若上拉处理,按键低电平有效,所以就没有处理直接跳出去。 第二部分:按键的电平读取 //只读取初次按键电平状态,在状态机中进一步处理 static u8 Key_Read(void) { if(!READ_KEY1) return KEY1_PRES; i
[单片机]
51单片机-输入捕获
1.捕获高电平时间 我们利用定时器0的计数功能实现捕获外部引脚的高电平时间。定时器在不同用法里有不同称呼,比如我们这次是想得知某段过程持续了多长时间,用定时器的计数方式的话就叫做计数器。 我们这次选用的外部引脚还是P1.6,初始时先让该引脚输出低电平。 我们之前没有说过当TMOD低四位里的第三位GATE为1时是什么作用,这里说明一下,当这个位被置1的话,如果此时有“TR0=1;”,且P3.2必须为高电平的时候,才会触发定时器0的计数(P3.2为低电平时不会触发),也就是TL0每隔(12/11059200)秒就会加1,加到256变为0之后TH0就加1。一直加到65535就会有“TL0=255;”和“TH0=255;”,再加
[单片机]
51单片机-<font color='red'>输入</font>捕获
NVIDIA下一代显卡大变:频率架构截然不同
集微网消息 ,NVIDIA与AIC合作伙伴终于开始了新一代GeForce游戏卡的各项准备工作,预计8-9月份就会和我们见面,比往常节奏慢了足足半年。 迄今为止,NVIDIA尚未披露下代游戏卡的任何具体细节,甚至连名字叫做GeForce 11系列还是GeForce 20系列都是个迷,但这并不妨碍各种传闻的流出,尤其是从现在开始的两三个月内,这种消息会越来越多,当然真假就不太好说了。 从目前来看,NVIDIA手里的新架构虽然不少,包括Volta(伏特)、Ampere(安培)、Turing(图灵),但新一代游戏卡用的应该是Turing,其他两个都面向专业领域。 最新曝料称,Turing架构会再一次彻底改变GPU核心频率的运作方式,拥有全
[手机便携]
探讨用直流输入来运行AC/DC的可能性
  是否可以使用直流输入来运行AC-DC电源?   答案是肯定的,在某些时候和条件下。   许多标准的AC-DC开关电源(Lambda的大部分产品)都在 90-264VAC 这一最常用的交流输入范围之外指定一个较高的直流输入范围。我们会收到很多有关将直流输入连接到交直流输入均可适用的AC-DC电源的问题,如何连接,在什么位置连接等。   高压直流电源使用在哪些场合,并且为什么使用?事实证明,很多电站都提供高压直流电而不是常用的 115VAC 或 208VAC 的电网来为电站的设备供电。这种高压直流电(一般为 120 或 130-330VDC)可以方便的与电池结合使用,从而确保电源供电,而不需要使用价格昂贵的集中式系统或本地不间断电
[电源管理]
探讨用直流<font color='red'>输入</font>来运行AC/DC的可能性
恩智浦全球首款四路输入HDMI 1.3接收器提升HDTV观赏体验
集成芯片无需要外部转换器,加速电视设计,降低产品成本 荷兰埃因霍芬,2007年8月28日 ——恩智浦半导体(NXP Semiconductors)(由飞利浦创建的独立半导体公司)今天发布了一款新型的HDMI 1.3接收器芯片TDA19978HL,这款芯片不但提升了视听性能,而且降低了高清(HD)A/V接收器的成本。TDA19978HL是业界首款具有四路输入的HDMI 1.3接收器,不再需要使用外部HDMI转换器,可降低系统的总体成本和设计周期,加快产品上市时间,同时满足业界对HDTV观赏的性能和应用方面的严格要求。 恩智浦新型HDMI 1.3接收器设计独特,实现了12位深色和扩展色域的完美结合,能够真实再现逼真色彩,支持高比
[新品]
STM32CubeMX输出可调频率与占空比的PWM
1,新建工程,我选的是STM32F103ZET6芯片,选择定时器的PWM功能。 2、配置时钟,我这里配的是内部时钟,有需要的可以自己改。 3、配置定时器,默认就可以,因为代码里面需要对配置的初始化代码进行修改的,而修改后才可以实现该功能。 4、生成代码后,修改代码,找到PWM初始化函数,修改为如下,注意要把初始化函数前面的 static 关键字也去掉,而且函数声明也要跟着修改。 void MX_TIM4_Init(uint16_t pre,uint16_t pul) //修改初始化函数,改变频率与PWM{ //占空比=Pulse/Period;频率:f=48M/pre/per TIM_MasterConfigTypeD
[单片机]
STM32CubeMX输出可调<font color='red'>频率</font>与占空比的PWM
P系列14um,单输出,512,1024,2048单元行扫描光电二极管阵列图像传感器(RL0512P、RL1024P、RL2048P)
光电二极管(Photo-Diode)和普通二极管一样,也是由一个PN结组成的半导体器件,也具有单方向导电特性。但在电路中它不是作整流元件,而是把光信号转换成电信号的光电传感器件。
[模拟电子]
XC6701D:输入电压 28V高速低功耗的电压调整器
     XC6701系列产品,是采用了CMOS工艺技术的额定输入耐压28V, 高速, 消耗电流低的电压调整器。以低消耗电流实现了高纹波抑制和高精度。   内置过流保护电路和过热保护电路,当输出电流达到限制电流或结温度达到限制温度时,自动开始工作,起到保护IC的作用。   可以按用途选择SOT-89,SOT-223,TO-252等封装。   采用了各种尺寸的封装,可以广泛应用于便携仪器, 家用电器,车载导航系统等用途。   特点 最大输出电流 大于 150mA (200mA 限流 ) (VIN=VOUT(T)+3.0V) 输入输出电压差 300m
[电源管理]
XC6701D:<font color='red'>输入</font>电压 28V高速低功耗的电压调整器
小广播
最新应用文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 安防电子 医疗电子 工业控制

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved