1 电池的充电要求
充电曲线适用于锂离子电池充电,它包括3个充电阶段:预充阶段、快充恒流(CC)阶段、恒压(CV)终止阶段。在预充阶段,在电池电压低于3.0 V时,电池以较低速率充电。通常情况下,当电池电压达到3.0 V,充电器就会进入CC阶段。快速充电阶段CC通常限制在1 C电池额定值以下。如果充电率超过1 C,那么电池使用寿命就会缩短,因为节点上积存的金属锂会与电解质发生反应,造成永久损失。最后,充电器会进入CV阶段,这时它将保持峰值电池电压,并在充电电流下降到预定义大小时终止充电。
电池容量是电池电压的函数,电压越高,容量就越大。不过,如果电池电压升高,就会导致电池使用寿命缩短。例如,如果用4.3 V电压给电池充电,那么容量就会提高lO%,但电池使用寿命会缩短一半。另一方面,如果电池充电不足,比理想电压状态低40 mV,那么容量就会降低约8%。因此,非常精准的电池充电电压至关重要。
2 支持输入OVP的热调节电池充电器
图1为支持热调节和输入OVP的低成本单独线性电池充电器电路。该充电器能将适配器的DC电压降到电池电压水平。线性充电器的功耗计算公式:
充电器从预充阶段转向快充模式时,输入电压与电池电压之间有较大差值,这时功耗会达到最高。例如,如果用5 V适配器来给1 200 mAh锂离子电池充电,那么在1 A充电电流与3.2 V电池电压下的最大功耗为1.8 W。如果采用3 mmx3 mm QFN封装,热阻抗为47℃/W,这样的功耗会造成85℃的温度提升。在45℃环境温度下,结温超过125℃的工作温度极限。在充电开始阶段,很难将结温控制在安全散热范围内。随著电池电压在充电阶段不断升高,功耗也会下降。充电进入CV模式后,功耗会进一步下降,而充电电流也开始下降。
如何改进设计才能确保充电器在安全散热范围内正常工作呢?更高级的电池充电器(如bq2406x与bq2403x)引入了热调节环路,可避免充电器过热。内部芯片温度达到预定义的温度阈值后(如110℃),器件温度只要进一步提升就会使充电电流下降。这有助于限制功耗,并为充电器提供热保护。使IC结温升高到热调节的最大功耗取决于PCB板布局、散热通孔的数量以及环境温度。从图2看出,1.2 s之后,热环路会在2 s内将有效充电电流从1.2 A降至600 mA。
热调节通常在快充早期阶段进行,不过如果在CV模式下器件仍然工作的话,充电电流会过早达到充电终止阈值。为了避免充电误终止,只要散热调节回路在工作,电池充电终止功能就会被禁用。此外,降低有效充电电流会延长电池充电时间,如果充电安全计时器有固定设置的话,就会过早终止充电。bq2406x采用动态安全计时器控制电路,能在热调节阶段有效延长安全时间,并尽可能降低安全计时器的故障率。从图3中可以看出,热调节模式下安全计时器的响应与有效充电电流成反比。
启用电池充电功能后,内部电路会生成与ISET引脚设置的实际充电电流成正比的电流。电阻器RSET上生成的电压反映的是充电电流。该电压可由主机监控,以获取充电电流信息。
为锂离子电池充电的适配器有很多种。低价位适配器的稳压输出可能不太理想,空载下的输出电压也高于正常负载情况。此外,在电池热插人情况下,充电器输入电压会达到适配器电压的两倍,这是由线缆电感和电池充电器输入电容间的共振造成的。为了在输入电压高于预定义阈值时提高安全度,bq2406x充电器的输入OVP功能将禁止充电。
LDO模式(TMR引脚开路时)可禁止充电终止电路或电池检测电路工作。并将安全定时器时钟保持在复位状态。该模式通常用于无电池或正在进行测试的工作环境。
许多应用都要求在电池充电同时给系统供电。如图l所示,系统直接连接到电池充电输出,系统和充电器间的相互影响会使安全计时器生成错误充电终止信息。图4为能够解决上述问题的典型应用电路。这里有两个独立的电源路径,一个给电池充电,另一个给系统供电。如果AC适配器不可用,那么电池放电MOSFET在R4和C2设置的时间延迟之后就会打开,这样电池就能给系统供电了。
3 总结
支持热调节功能的线性电池充电器能显著提高散热设计与安全性。利用输入OVP机制,只有经过认可的适配器才能给电池充电,从而提高系统安全性。
上一篇:三星推X3超薄笔记本电池可用9小时
下一篇:满足多媒体处理器动态需求的电源管理技术
推荐阅读最新更新时间:2023-10-18 14:49
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- 非常见问题解答第223期:如何在没有软启动方程的情况下测量和确定软启动时序?
- Vicor高性能电源模块助力低空航空电子设备和 EVTOL的发展
- Bourns 推出两款厚膜电阻系列,具备高功率耗散能力, 采用紧凑型 TO-220 和 DPAK 封装设计
- Bourns 全新高脉冲制动电阻系列问世,展现卓越能量消散能力
- Nexperia推出新款120 V/4 A半桥栅极驱动器,进一步提高工业和汽车应用的鲁棒性和效率
- 英飞凌推出高效率、高功率密度的新一代氮化镓功率分立器件
- Vishay 新款150 V MOSFET具备业界领先的功率损耗性能
- 强茂SGT MOSFET第一代系列:创新槽沟技术 车规级60 V N通道 突破车用电子的高效表现
- 面向车载应用的 DC/DC 电源
- TE 智能电表特训营,产品、技术、市场全解锁!
- TE携手ARCH打造定制化摩托骑行体验,助力智能出行未来
- 联想栗子工业智能开发板抢先首发!免费申请进行时~另有12 月 22 日深圳技术沙龙邀您莅临!
- 福禄克专家级热像仪震撼上市,参与问答赢精美好礼!
- 有奖直播|是德科技感恩月—遇见KeysightCare - 贵重仪器安全避坑指南
- Silicon Labs BG22-EK4108A 开发套件 用科技连接未来 申请进行时!
- TI无线产品调查问卷,好礼轻松拿!
- 有奖直播|多款MSP430™片上Sigma-Delta ADC助力高精度信号检测应用 报名中
- 直播已结束【使用 TI 低成本 MSPM0 MCU 快速开发 – 生态详解系列之二】(9:45开始入场)