锂离子电池智能充电器硬件的设计

最新更新时间:2010-01-11来源: 今日电子关键字:锂离子电池  充电器  C8051F310  单片机 手机看文章 扫描二维码
随时随地手机看文章
  锂离子电池具有较高的能量重量和能量体积比,无记忆效应,可重复充电次数多,使用寿命长,价格也越来越低。一个良好的充电器可使电池具有较长的寿命。利用C8051F310单片机设计的智能充电器,具有较高的测量精度,可很好的控制充电电流的大小,适时的调整,并可根据充电的状态判断充电的时间,及时终止充电,以避免电池的过充。

  本文讨论使用C8051F310器件设计锂离子电池充电器的。利用PWM脉宽调制产生可用软件控制的充电电源,以适应不同阶段的充电电流的要求。温度传感器对电池温度进行监测,并通过AD转换和相关计算检测电池充电电压和电流,以判断电池到达哪个阶段。使电池具有更长的使用寿命,更有效的充电方法。

  设计过程

  1 充电原理

  电池的特性唯一地决定其安全性能和充电的效率。电池的最佳充电方法是由电池的化学成分决定的(锂离子、镍氢、镍镉还是SLA电池等)。尽管如此,大多数充电方案都包含下面的三个阶段:

  ● 低电流调节阶段
  ● 恒流阶段
  ● 恒压阶段/充电终止

  所有电池都是通过向自身传输电能的方法进行充电的,一节电池的最大充电电流取决于电池的额定容量(C)例如,一节容量为1000mAh的电池在充电电流为1000mA时,可以充电1C(电池容量的1倍)也可以用1/50C(20mA)或更低的电流给电池充电。尽管如此,这只是一个普通的低电流充电方式,不适用于要求短充电时间的快速充电方案。

  现在使用的大多数充电器在给电池充电时都是既使用低电流充电方式又使用额定充电电流的方法,即容积充电,低充电电流通常使用在充电的初始阶段。在这一阶段,需要将会导致充电过程终止的芯片初期的自热效应减小到最低程度,容积充电通常用在充电的中级阶段,电池的大部分能量都是在这一阶段存储的。在电池充电的最后阶段,通常充电时间的绝大部分都是消耗在这一阶段,可以通过监测电流、电压或两者的值来决定何时结束充电。同样,结束方案依赖于电池的化学特性,例如:大多数锂离子电池充电器都是将电池电压保持在恒定值,同时检测最低电流。镍镉、NiCd电池用电压或温度的变化率来决定充电的结束时间。

  充电时部分电能被转换成热能,直至电池充满。而充满后,所有的电能将全部被转换成热能。如果此时不终止充电,电池就会被损坏或烧毁。快速充电器电池(完全充满的时间小于两小时的充电器)则可以解决这个问题,因为这些充电器是使用高充电电流来缩短充电时间的。因此,对于锂离子电池来说,监测它的温度是至关重要的,因为电池在过充电时会发生爆裂,在所有的充电阶段都应该随时监测温度的变化,并且在温度超过最大设定值时立即停止充电。

  2 总体设计
 
  充电电路由三部分:控制部分,检测部分及充电部分组成。如图1所示,采用F310单片机进行充电控制,单片机本身具有脉宽调制PWM型开关稳压电源所需的全部功能,具有10位A/D转换器。利用单片机A/D端口,构成电池电压,电流,温度检测电路。

  单片机通过电压反馈和电流反馈信号,直接利用PWM输出将数字电压信号并转化成模拟电压信号,能够保证控制精度。

  3 控制部分电路设计

  C8051F310单片机

  ①模拟外设

  a.10位ADC:转换速度可达200ks/s,可多达21或17个外部单端或差分输入,VREF可在外部引脚或VDD中选择,内置温度传感器(±3℃),外部转换启动输入;

  b.两个模拟比较器:可编程回差电压和响应时间,可配置为中断或复位源,小电流(〈0.5μA)。
  
  ②供电电压

  a.典型工作电流:5mA、25MHz;
  b.典型停机电流:0.1μA;
  c.温度范围:-40~+85℃。

  ③高速8051微控制器内核

  a.流水线指令结构:70%的指令的执行时间为一个或两个系统时钟周期;
  b.速度可达25MI/s(时钟频率为25MHz时);
  c.扩展的中断系统。

  ④数字外设

  a.29/25个端口I/O:所有的口线均耐5V电压;
  b.4个通用16位计数器/定时器;
  c.16位可编程计数器/定时器阵列(PCA),有5个捕捉/比较模块;
  d.使用PCA或定时器和外部时钟源的实时时钟方式。

  控制电路中如图2所示,P0.3口提供充电电源,P0.6口检测充电电压的大小,P0.5口检测充电电流的大小,P0.4口检测电池的温度。

  充电电流由单片机脉宽调制PWM产生,充电电流由AD转换再经过计算得出。

  4 充电部分及检测部分电路设计



图3为充电电路与检测电路图


  ①充电过程曲线

  如图4所示,充电过程由预充状态,恒流充电状态和恒压充电状态组成。

  ②快速转换器

  实现渐弱终止充电器的最经济的方法就是用一个快速转换器。快速转换器是用一个电感和/或一个变压器(需要隔离的时候用变压器)作为能量存储单元以离散的能量包的形式将能量从输入传输至输出的开关调节器反馈电路,通过晶体管来调节能量的传输,同时也作为过滤开关,以确保电压或电流在负载时保持恒定。


a 开关闭合 b 开关打开


  快速调节器的操作是通过控制一个晶体管开关的占空比来实现的。占空比会自动增加以使电池流入更多的电流。当VBATT

  ③电感的确定

  电感对交流电是有阻碍作用的。在交流电频率一定的情况下,电感量越大,对交流电的阻碍能力越强??一定的情况下,交流电的频率越高,电感对交流电的阻碍能力越大,频率越低,电感对交流电的阻碍能力越小。也就是说,电感有阻止交流电通过的特性。

  其工作原理是这样的:当负载两端的电压要降低时,通过MOSFET场效应管的开关作用,外部电源对电感进行充电并达到所需的额定电压。当负载两端地电压升高时,通过MOSFET场效应管的开关作用,外部电源供电断开,电感释放出刚才充入的能量,这时电感就变成了电源继续对负载供电。随着电感上存储的能量地消耗。负载两端的电压开始逐渐降低,外部电源通过MOSFET场效应管的开关作用又要充电。依次类推在不断的充电和放电的过程中形成了一种稳定的电压,永远使负载两端地电压不会升高也不会降低,这就是开关电源的最大优势。

  要确定快速转换器中电感的大小首先应假定晶体管的占空比为50%,因为此时的转换器操作操作效率最高。占空比由方程式1给出:
  (其中T是PWM的周期在程序示例中T=10.5s)

  占空比=ton/T (1)

  至此就可以选择一个PWM的转换频率(如方程式2所示)PWM的转换频率越大,则电感的值越小,也越节约成本。

  我的示例代码配置F310的8位硬件PWM是使用内部24.5MHz主时钟的256分频来产生一个95.7kHz的转换速率。

  L=(Vi-Vsat-Voton)/2Iomax (2)

  现在我们可以计算电感的大小了,假定充电电压Vi的值为15V,饱和电压Vsat的值为0.5V,需要获得的输出电压值为4.2V,并且最大输出电流IOMAX为1500mA,那么,电感的值至少应选为18H。

      需要注意的是:在本电路中的电容仅仅是一个纹波衰减器,因为纹波与电容的大小成反比例关系,所以电容的值越大,衰减效果越好。

关键字:锂离子电池  充电器  C8051F310  单片机 编辑:金海 引用地址:锂离子电池智能充电器硬件的设计

上一篇:电池管理应用中精确测量和温度稳定的重要性
下一篇:基于RFID的手持机锂电池快速充电电路设计

推荐阅读最新更新时间:2023-10-18 14:52

单片机硬件设计的经验总结
下面是总结的一些设计中应注意的问题,和 单片机 硬件设计原则,希望大家能看完 (1) 在元器件的布局方面,应该把相互有关的元件尽量放得靠近一些,例如,时钟发生器、晶振、CPU的时钟输入端都易产生噪声,在放置的时候应把它们靠近些。对于那些易产生噪声的器件、小 电流 电路 、大电流电路开关电路等,应尽量使其远离单片机的逻辑控制电路和存储电路(ROM、RAM),如果可能的话,可以将这些电路另外制成电路板,这样有利于抗干扰,提高电路工作的可靠性。 (2) 尽量在关键元件,如ROM、RAM等 芯片 旁边安装去耦 电容 。实际上,印制电路板走线、引脚连线和接线等都可能含有较大的电感效应。大的电感可能会在Vcc走线
[电源管理]
单片机AT89C51制作一个8路流水灯
ORG 0000H START:MOV P1,#01111111B;最下面的LED点亮 LCALL DELAY ;延时1秒 MOV P1,#10111111B ;最下面第二个的LED点亮 LCALL DELAY ;延时1秒 MOV P1,#11011111B ;最下面第三个的LED点亮 (以下省略) LCALL DELAY MOV P1,#11101111B LCALL DELAY MOV P1,#11110111B LCALL DELAY MOV P1,#11111011B LCALL DELAY MOV P1,#11111101B LCALL DELAY MOV P1,#11111110B LCALL DELAY MOV
[单片机]
单片机有哪些特点?
单片机的特点有: (1)单片机的存储器ROM和RAM是严格区分的。ROM称为程序存储器,只存放程序、固定常数及数据表格。RAM则为数据存储器,用作工作区及存放用户数据。 (2)采用面向控制的指令系统。 (3)单片机的I/O引脚通常是多功能的。 (4)单片机的外部扩展能力强。 (5)单片机体积小,成本低,运用灵活,易于产品化。 (6)面向控制,能有针对性地解决从简单到复杂的各类控制任务,因而能获得最佳的性能价格比。 (7)抗干扰能力强,适用温度范围宽。 (8)可以方便地实现多机和分布式控制,使整个控制系统的效率和可靠性大为提高。
[单片机]
单片机AT89C2051控制的充电器电路设计
用单片机AT89C2051控制的充电器电路
[单片机]
用<font color='red'>单片机</font>AT89C2051控制的<font color='red'>充电器</font>电路设计
8051单片机串口通信中的检错方法研究
0 引言 对于基于flash控制器的8051的芯片结构,一般在进行数据传输时,都是先通过串口将数据传送到flash控制器的buffer中。由于buffer的大小为512 bytes,所以每次传输的最大数据量为512bytes。本文中所讨论的三种检错方法的传输数据量均为512 bytes。 1 检错方式 基于8051的串口数据通信系统的硬件开发平台框图如图1所示。利用该平台进行数据传输时,通常有三种数据检错方式。 1.1 奇偶校验 奇偶校验是检错中比较常见的一种方法。它利用数据中的1的个数作为检错的标志位,若1的个数为奇数个,则错误检测的标志位为1,若1的个数为偶数,则错误检测的标志
[单片机]
基于51单片机ADC0808自动数字电压表仿真数码管显示
硬件设计 该设计是基于51单片机,ADC采用TI公司的ADC0808,自动数字电压测量表,显示器采用4位数码管,测量范围为0.5~10V,精度约为0.02。 仿真图如下: 程序源码: #include reg52.h unsigned char code dispbitcode ={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; unsigned char dispbuf ; unsigned int i; unsigned int j; unsigned int getdata; unsigned int temp; unsigned int temp1;
[单片机]
基于51<font color='red'>单片机</font>ADC0808自动数字电压表仿真数码管显示
瑞萨电子推出全球首款28nm汽车级MCU
3月27日,瑞萨电子株式会社发布了业界第一款使用28nm工艺的集成闪存微控制器(MCU),并于即日起开始交付样片。据瑞萨介绍,这款 RH850/E2x系列微控制器内置了多达6个400Mhz的处理器核心,成为业界第一款能达到9600MIPS指令处理能力的车用控制片内闪存MCU。该系列MCU还具有多达16MB的内置闪存以及更完善的安保功能和功能安全性。 Renesas autonomy™是瑞萨电子面向智能辅助驾驶和自动驾驶开发推出的开放、创新和可信赖的开发平台。通过该平台,瑞萨电子为汽车行业向下一代环保汽车、网联汽车、自动驾驶汽车的进化提供端对端的解决方案。28nm工艺的车用控制MCU是一款突破性的产品,为云服务互连和环境感
[半导体设计/制造]
51单片机开发万年历系统实现(闹钟,秒表功能)
首先说一下我用到的东西,硬件方面(电路都是自己拿万能板焊的):一片51单片机,一块12864液晶,一片ds1302时钟芯片,四个按键。还有些电容、电阻、晶振什么的,下面讲到的时候再说吧。主要的就这么多吧。再简单说一下按键的功能吧,假设按键分别是k1,k2,k3,k4。首先lcd主界面是显示的当前的日期时间和四路闹钟的时间。附图。k1,k2,k3,k4最开始被按下时分别对应的功能是k1:进入时间设定模式;k2:进入日期设定模式;k3:进入闹钟设定模式;k4:进入秒表计数模式。进入不同的模式后,四个按键有都有了新的功能,首先k4一直是退出,就是退出到最开始的选四种模式。k1,k2,k3对于日期和时间设定模式是一样的功能k1:数值加1,
[单片机]
51<font color='red'>单片机</font>开发万年历系统实现(闹钟,秒表功能)
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved