电动汽车电池管理系统设计

最新更新时间:2010-01-18来源: 电子工程专辑 关键字:电动汽车  电池管理系统  锂电池 手机看文章 扫描二维码
随时随地手机看文章
    随着能源紧缺、石油涨价、城市环境污染的日益严重,替代石油的新能源的开发利用越来越被各国政府所重视。在新能源体系中,电池系统是其中不可或缺的重要组成部分。近年来,以锂电池为动力的电动自行车、混合动力汽车、电动汽车、燃料电池汽车等受到了市场越来越多的关注。动力电池在交通领域的应用,对于减少温室气体的排放、降低大气污染以及新能源的应用有着重要的意义。其中锂电池以高能量密度、高重复循环使用次数、重量轻以及绿色环保等优势越来越受到人们的关注,所以在手机、笔记本电脑、电动工具等便携式手持设备中已经得到广泛的应用,并已经开始进入电动车、电动汽车等大功率的应用中,成为全球电动汽车发展的热点

    但是由于锂电池在加热、过充/过放电流、振动、挤压等滥用条件下可能导致电池寿命缩短以致损坏,甚至会发生着火、爆炸等事件,因此安全性问题成为动力锂电池商业化推广的主要制约因素。安全型、低成本、长寿命锂离子电池的安全标准、安全评价方法、电池制造过程的安全与可靠性控制以及通过正负极材料、电解质与隔膜优选改善电池安全与可靠性是实现确保大型动力锂离子电池安全可靠,实用化的关键。而电池管理系统作为电池保护和管理的核心部件,不仅要保证电池安全可靠的使用,而且要充分发挥电池的能力和延长使用寿命,作为电池和车辆管理系统以及驾驶者沟通的桥梁,电池管理系统对于电动汽车性能起着越来越关键的作用。

电池管理系统的主要功能

    电池管理系统与电动汽车的动力电池紧密结合在一起,对电池的电压、电流、温度进行时刻检测,同时还进行漏电检测、热管理、电池均衡管理、报警提醒,计算剩余容量、放电功率,报告SOC&SOH状态,还根据电池的电压电流及温度用算法控制最大输出功率以获得最大行驶里程、以及用算法控制充电机进行最佳电流的充电,通过CAN总线接口与车载总控制器、电机控制器、能量控制系统、车载显示系统等进行实时通讯。图1为电池管理系统的简单框图。


图1:为电池管理系统的简单框图。

    电池管理系统的基本功能:1)监测单体电芯的工作状况,例如单体电池电压、工作电流、环境温度等。2)保护电池,避免电池工作在极端的条件下发生电池寿命缩短,损坏,甚至发生爆炸、起火等危害人身安全的事故。

    一般而言,电池管理系统必须具备以下电路保护功能:过压和欠压保护、过流和短路保护、过高温和过低温保护、为电池提供多重保护以提高保护和管理系统的可靠性(硬件执行的保护具有高可靠性、软件执行的保护具有更高的灵活性、管理系统关键元器件失效的保护为用户提供第三重保护)。这些功能可以满足大部分手机电池、电动工具和电动自行车应用的需要。

电动汽车对电池管理系统提出更高挑战

    电动汽车电池集成系统是一个开放的动力系统,它通过汽车级CAN总线进行通信,和车辆管理系统、充电机、电机控制器协同工作,以满足汽车以人为本的安全驾驶理念。因此汽车级电池管理系统必须做到:满足TS16949 和汽车电子的要求、实现高速数据采集和高可靠性、汽车级CAN总线通讯、高抗电磁干扰的能力(最高级别的EMI/EMC要求)、在线诊断功能。

    其主要功能为:电池电压和温度等信息的高速采集;实现电池高效率均衡,充分发挥电池集成系统的容量从而提高电池集成系统的寿命,同时减小热量的产生;电池的健康状况和剩余电量的估算和显示;高可靠的通讯协议(汽车级CAN通讯网络);动力总成技术要保证电池发生任何安全使用的前提下,充分发挥电池的潜力,保证电池的性能,提高电池的寿命;电池的温度和散热管理,是电池系统工作在温度相对稳定的环境条件;漏电检测以及复杂的地线设计。

    由于电动汽车中电池的分布环境非常复杂,处于高压大功率的工作状态,对EMI/EMC要求非常高,这就为电池管理系统的设计带来了更大的挑战。

电动汽车电池系统的层次化、模块化设计

    由于电动车电池系统是由成百上千个电芯单元集成,考虑到汽车的空间、重量的分配和安全的要求,这些电芯单元被划分成标准的电池模块,分布在汽车底盘不同的位置,由动力总成和中央处理单元统一管理;每个标准电池模块也是有多个电芯通过并联和串联组成,由模块的电控单元进行管理,通过CAN总线把电池模块的信息汇报给中央处理器和动力总成单元,中央处理器和动力总成单元把这些信息经过处理以后,把最终的有关集成系统的信息如剩余电量、健康状况以及电池的能力相关信息等通过CAN总线汇报给车辆管理系统。电动汽车电池系统的层次化,模块化的设计就要求电池管理系统设计的层次化、模块化(图2)。


图2:层次化、模块化的电动汽车电池管理系统设计

电池管理系统的芯片集成技术

    汽车电池系统的可靠性要求极高,特别是高压监控部分,电池均衡部分,由于集成的解决方案少,很多方案采用分立元件搭配而成,导致:元件匹配度不好,信号采集的精度下降;外部节点增多,难以做到自动化测试,提高测试成本,降低测试覆盖率,系统可靠性低;外部元件的功耗很难控制;系统尺寸大,成本高。

    凹凸科技(O2Micro)为全球提供首颗支持>5节电池串联单芯片保护和检测的方案OZ89xx,该方案还支持多芯片级联的应用。目前采用该芯片的电池管理系统方案已成功用于纯电动车和混合动力车电池模块电控单元中。


表1以标准电池模块为例介绍分立方案和集成方案的比较。

    由此可见,集成芯片的解决方案对提高系统的可靠性,降低成本具有十分重要的作用,他是电池集成技术中硬件设计技术的核心。

本文小结

    未来,动力锂电池在电动汽车领域中具有广阔的前景,而电池管理系统将对于电池安全使用,以及和车辆管理的沟通起着关键的桥梁作用。电池管理技术包括硬件设计技术和软件设计技术,而其中高压混合信号处理技术及芯片设计是硬件设计核心,不仅是保证在汽车环境下实现高可靠、高速、高精度信号采集和处理的关键,也是提高测试覆盖率、支持在线检测和降低成本的关键;而软件的核心则包括电池管理的算法,通讯协议的支持以及动力总成的相关技术等。凹凸科技(O2Micro)是全球主要电池管理解决方案的供应商之一,凭借其在电池保护和管理多年的芯片设计和方案设计的经验,掌握了具有国际先进水平的电池管理技术,为全球电池厂商,系统厂商提供了高品质技术服务,为中国电动车的发展贡献了自己的力量。

关键字:电动汽车  电池管理系统  锂电池 编辑:金海 引用地址:电动汽车电池管理系统设计

上一篇:基于网络的电能质量监测系统设计
下一篇:IR推出适用于汽车的DirectFET®2 功率MOSFET

推荐阅读最新更新时间:2023-10-18 14:52

电动汽车无线充电技术解析
当今电动汽车无线充电面临的挑战 虽然无线充电潜力巨大,但现在还不是普遍运用它的好时机,下面这些问题正阻碍无线充电的普遍运用: 与等效的住宅电动汽车充电站相比,无线充电非常昂贵。 对于大规模无线充电产生的磁场,其影响和安全性尚不完全可知。 当前可行无线充电方案的充电速度都非常慢,而电动汽车电池容量较大,充电慢的缺点会更加凸显。 目前无线充电还缺乏统一标准,可能会限制无线充电设备的通用性——例如一个无线充电停车位可能只适用于某一特定类型的车辆。 奥迪(Audi)电动汽车充电和基础设施经理Christopher Michelbacher正是以这样的观点来看待当今广泛运用无线充电所面临的
[汽车电子]
<font color='red'>电动汽车</font>无线充电技术解析
为什么动力电池会发生燃烧或爆炸
爆炸是动力电池系统较为常见的危害表现,造成的影响,也更为严重,不但会造成财产损失和环境破坏,甚至会造成人身伤害或生命危险。 导致动力电池系统发生燃烧或爆炸的可能原因有: 一动力电池(电芯)的放热副反应导致热失控,引燃电解液和其他可燃物质; 动力电池系统的高压回路中局部连接抗阻抗过大,有大电流流过时倒至温度上升达到着火点温度,引燃动力电池系统内部的可燃物质; 动力电池系统外部发生燃烧,导致动力电池系统内部温度持续上升,达到着火点温度,引燃内部的可燃物质。 针对电动汽车的使用的情况分析,第一种情况的发生概率较高,危险系数也较高,电芯的放热副反应导致热失控是动力电池系统发生燃烧或爆炸的主要原因。 锂离子电池内部主要放热反应有: E
[嵌入式]
如何为下一代电动汽车创建安全可靠的电路
在电动化和自动化程度更高的车辆中建立可靠电路保护的设计注意事项。 图1。在混合动力电动汽车电气结构中,车载充电器必须与交流电源线及其可能产生的过载和瞬态过压相匹配。(Littelfuse) 图2。车载充电器框图和推荐的保护和功率控制器件。(Littelfuse) 图3。用于保护CAN总线的TVS二极管阵列。(Littelfuse) 为电动车辆设计电路极具挑战性。 为了确保能够承受过载,瞬态和静电放电(ESD)的可靠和安全设计,设计人员需要确保其电路具有必要的器件以防止损坏。 本文以车载充电器为例,提出了电路保护和高效功率控制的建议。 如图1示意图所示,对于必须开发能够承受来自内燃发动机和大功率电动机瞬
[汽车电子]
如何为下一代<font color='red'>电动汽车</font>创建安全可靠的电路
我国上半年电动汽车销量排行榜,谁卖的最多?
根据乘联会公布的今年上半年乘用车销量数据,我国上半年新能源乘用车销量达35万辆,同比增长1.2倍。其中, 电动汽车 销量近26万辆,占新能源乘用车销量74%。   反观燃油车市场,6月传统燃油车销售增速-5%,新能源汽车俨然已成为拉动车市增速和增量的核心动力。     A00级电动汽车依旧是中流砥柱 纵观上半年电动汽车市场,A00级依然保持强势的劲头,牢牢占据着TOP5中前三甲的席位。   第一名: 江淮iEV6E 作为江淮的主打产品,iEV6E上半年销量达到了18,852辆。 6月26日,江淮iEV6E运动版车型正式上市,新车综合续航里程达到了310公里,官方售价区间12.55万-15.88万元,补贴后售5.95万-6.9
[嵌入式]
锂电池、铅酸电池供电的户外蓝牙音箱如何选择合适的升压+音频功放IC?
引言 10W以上功率的户外蓝牙音箱以多节锂电及铅酸电池为供电电源,为了突破因供电电压局限导致输出功率不够,很多电子工程师采用升压芯片将电池电压升高后给功放IC供电,从而保证有足够大的功率输出。锂电池、铅酸电池供电的户外蓝牙音箱如何选择合适的升压+音频功放IC呢? 一般分为以下三个步骤: 一、确认音箱系统的电源。如单节电池?双节电池?或是3节锂电池?铅酸电池等。 二、确定所需的功率以及所选喇叭的直流阻抗。如单声道还是立体声?功率是10W?20W?还是50W等。喇叭是4欧?8欧还是3欧等。根据这些前提条件选择合适的功放IC; 三、确定音箱系统电源和输出功率后,判断是否需要升压。需要升到多少V?输出多大电流?从而选
[手机便携]
<font color='red'>锂电池</font>、铅酸电池供电的户外蓝牙音箱如何选择合适的升压+音频功放IC?
中国寻求主宰全球锂电池市场:外国对手渐被蚕食
  外媒称,从提供补贴到限制外国竞争对手,在政府政策支持下,中国电池企业开始主导过去30年由韩日同行引领的行业。下面就随电源管理小编一起来了解一下相关内容吧。   据英国某报3月21日报道,在政府政策——从为电动车提供补贴到限制外国竞争对手——的支持下,中国电池企业正开始主导行业,而该行业过去30年一直由韩国和日本电池制造商(如为特斯拉汽车制造电源电芯的松下)引领。   不久前,中国政府呼吁国内电池企业到2020年将电动车电池产能提升一倍,鼓励它们到海外投资建厂。随着汽车制造商加大对电动车的投入,锂离子电池至少在未来10年将是一项关键技术,从而创建一个巨大市场。据高盛估计,到2025年这个市场将价值400亿美元,并由中国主导。
[电源管理]
MIT采用纳米碳管设计锂电池 可多存5倍电量
  美国麻省理工学院(MIT)的研究人员开发出一种利用正极涂层碳纳米管构建新特性锂离子电容和电池的方法,该技术在含氧化学物质中加入纳米碳管涂层,并与锂元素一起大面积产生电流。   这种电池构造能够存储大约现有锂电池的5倍电量,并且还能提高放电能力,取得最佳性能,今后的电动汽车将有望采用这种大容量,高效率的产品。  
[汽车电子]
M12266 Type-C输入3-6节锂电池同口充放电管理移动电源双向快充IC解决方案
引言 Type-C充电接口因其快速充电和高度的通用性,成为了电子设备未来最主流的充电接口。它的兼容性强、数据传输速度快、充电速度快、可逆插拔等特点,使其在未来的发展中具有很大的潜力。常见的便携式电子设备如吸尘器、电动工具、音箱等,未来将不再需要使用专用的适配器充电,一套Type-C口快充即可适配日常充电设备,这不仅会给我们的工作和生活带来巨大便利,也将大大减少电子垃圾,意义非凡。 由于常见的便携式电子设备都采用锂电池供电,而不同设备的电采用的锂电池串数不同。多节锂电池充放电管理一直是一个棘手的问题。Type-C要统一充电接口,为不同锂电池串数的电子设备进行充电,对充电芯片的要求是内置快充协议的同时,还需要实现对不同设备锂电
[电源管理]
M12266 Type-C输入3-6节<font color='red'>锂电池</font>同口充放电管理移动电源双向快充IC解决方案
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved