小议开关电源电磁干扰机理与抑制措施

最新更新时间:2010-09-05来源: 互联网关键字:开关电源  电磁干扰  抑制措施  耦合 手机看文章 扫描二维码
随时随地手机看文章

  开关电源电磁干扰抑制的目的是使产品在一定的电磁环境下受到电磁干扰时,无性能的下降或故障,能工作正常,同时对电磁环境不构成污染。
  
  一 开关电源电磁干扰的产生机理

  
  开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种。若按耦合通路来分,可分为传导干扰和辐射干扰两种。现在按噪声干扰源来分别说明;
  
  1、二极管的反向恢复时间引起的干扰

  高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于pn结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化(di/dt)。
  
  2 开关管工作时产生的谐波干扰

  功率开关管在导通时流过较大的脉冲电流。例如正激型,推挽型和桥式变换器的输入电流波形在阻性负载时近似为矩形波,其中含有丰富的高次谐波分量。当采用零电流、零电压开关时,这种谐波干扰将会很小。另外,功率开关管在截止期间,高频变压器绕组漏感引起的电流突变,也会产生尖峰干扰。
  
  3 交流输入回路产生的干扰

  无工频变压器的开关电源输入端整流管在反向恢复期间会引起高频衰减振荡产生干扰。

  开关电源产生的尖峰干扰和谐波干扰能量,通过开关电源的输入输出线传播出去而形成的干扰称之为传导干扰;而谐波和寄生振荡的能量,通过输入输出线传播时,都会在空间产生电场和磁场。这种通过电磁辐射产生的干扰称为辐射干扰。
  
  4、其他原因

  元器件的寄生参数,开关电源的原理图设计不够完美,印刷线路板(pcb)走线通常采用手工布置,具有很大的随意性,pcb的近场干扰大,并且印刷板上器件的安装、放置,以及方位的不合理都会造成emi干扰。
  
  二 电磁干扰的相关理论
  
  1、开关电源的主要电磁干扰源

  开关电源中的电磁干扰源主要有开关器件、二极管和非线性无源元件。在开关电源中,印制 板布线不当也是引起电磁干扰的一个主要因数。
  
  1.1 开关电路产生的电磁干扰

  对开关电源来说,开关电路产生的电磁干扰是其主要干扰源之一。开关电路是开关电源的核 心,主要由开关管和高额变压器组成。他产生的dv/dt具有较大的脉冲,频带较宽且谐波丰富。这种脉冲干扰产生的主要原因是:

  (1) 开关管负载为高频变压器初级线圈,是感性负载。在开关导通瞬间,初级线圈产生很大的涌流,并在初级线圈的两端出现较高的浪涌尖峰电压.在开关管断开瞬间,由于初级线圈的漏磁通,致使一部分能量没有从一次线圈传输到二次线圈,储藏在电感中的这部分能量将和集电极电路中的电容、电阻形成带有尖峰的衰减振荡,叠加在关断电压上,形成关断尖峰电压。这种电源电压中断会产生与初级线圈接通时一样的磁化冲击电流瞬变,这个噪声会传导到输入输出端,形成传导干扰,重者有可能击穿开关管。

 (2) 脉冲变压器初级线圈,开关管和滤波电容构成的高频开关电流环路可能产生较大的空间辐射,形成辐射干扰,如果电容滤波容量不足或高频特性不好,电容上的高频阻抗会使高频电流以差模方式传导到交流电源中形成传导干扰。

  1.1.2 二极管整流电路产生的电磁干扰

  主电路中整流二极管产生的反向恢复电流的1di/dt1远比续流二极管恢复电流Idi/dtl小得多。作为电磁干扰源来研究,整流二极管反向恢复电流形成的干扰强度大,频带宽。整流二极管产生的电压跳变远小于电源中的功率开关管导通和关断时产生的电压跳变。因此,不计整流二极管产生的Idv/dtI和Idi/dtl的影响,而把整流电路当成电磁干扰耦合通道的一部分来研究也是可以的。
  
  2、开关电源电磁干扰的耦合通道

  开关电源通过耦合通道对自身产生干扰。通常多采用差模和共模干扰加以分析。

  “共模干扰”是指干扰大小和方向一致,其存在于电源任何一相对大地,或中线对大地间。共模干扰也称纵模干扰、不对称干扰或接地干扰。是载流体与大地之间的干扰。

  “差模干扰”是指干扰大小相等,方向相反,其存在于电源相线与中线之间。差模干扰也称常模干扰、横模干扰或对称干扰。·这是载流体之间的干扰。

  共模干扰说明了干扰是由辐射或串扰耦合到电路中的。而差模干扰则说明了干扰是源于同一条电路的。通常这两种干扰是同时存在的,由于线路阻抗的不平衡,两种干扰在传输中还会互相转化.所以情况非常复杂。
  
  三 抑制干扰的几种措施

  
  形成电磁干扰的三要素是干扰源、传播途径和受扰设备。因而,抑制电磁干扰也应该从这3方面着手。首先应该抑制干扰源,直接消除干扰原因,其次是消除干扰源和受扰设备之间的耦合和辐射,切断电磁干扰的传播途径;第三是提高受扰设备的抗扰能力,减低其对噪声的敏感度。目前抑制干扰的几种措施基本上都是用切断电磁干扰源和受扰设备之间的耦合通道,它们确是行之有效的办法。常用的方法是屏蔽、接地和滤波。

  采用屏蔽技术可以有效地抑制开关电源的电磁辐射干扰。例如,功率开关管和输出二极管通常有较大的功率损耗,为了散热往往需要安装散热器或直接安装在电源底板上。器件安装时需要导热性能好的绝缘片进行绝缘.这就使器件与底板和散热器之间产生了分布电容,开关电源的底板是交流电源的地线,因而通过器件与底板之间的分布电容将电磁干扰耦合到交流输入端产生共模干扰,解决这个问题的办法是采用两层绝缘片之间夹一层屏蔽片,并把屏蔽片接到直流地上,割断了射频干扰向输入电网传播的途径。为了抑制开关电源产生的辐射,电磁干扰对其他电子设备的影响,可完全按照对磁场屏蔽的方法来加工屏蔽罩,然后将整个屏蔽罩与系统的机壳和地连接为一体,就能对电磁场进行有效的屏蔽。电源某些部分与大地相连可以起到抑制干扰的作用。例如,静电屏蔽层接地可以抑制变化电场的干扰。电磁屏蔽用的导体原则上可以不接地,但不接地的屏蔽导体时常增强静电耦合而产生所谓“负静电屏蔽”效应。所以仍以接地为好,这样使电磁屏蔽能同时发挥静电屏蔽的作用。电路的公共参考点与大地相连,可为信号回路提供稳定的参考电位。因此,系统中的安全保护地线、屏蔽接地线和公共参考地线各自形成接地母线后,最终都与大地相连.

  在电路系统设计中应遵循。一点接地”的原则,如果形成多点接地,会出现闭合的接地环路,当磁力线穿过该回路时将产生磁感应噪声,实际上很难实现“一点接地”。因此,为降低接地阻抗,消除分布电容的影响而采取平面式或多点接地.利用一个导电平面(底板或多层印制板电路的导电平面层等)作为参考地。需要接地的各部分就近接到该参考地上。为进一步减小接地回路的压降,可用旁路电容减少返回电流的幅值。在低频和高频共存的电路系统中,应分别将低频电路、高频电路、功率电路的地线单独连接后,再连接到公共参考点上。

  滤波是抑制传导干扰的一种很好的办法。例如,在电源输入端接上滤波器,可以抑制开关电源产生并向电网反馈的干扰.也可以抑制来自电网的噪声对电源本身的侵害。在滤波电路中,还采用很多专用的滤波元件,如穿心电容器、三端电容器、铁氧体磁环,它们能够改善电路的滤渡特性。恰当地设计或选择滤波器,并正确地安装和使用滤波器,是抗干扰技术的重要组成部分。

  产生开关电源电磁干扰的因素还很多,抑制电磁干扰还有大量的工作。全面抑制开关电源的各种噪声会使开关电源得到更广泛的应用。

关键字:开关电源  电磁干扰  抑制措施  耦合 编辑:金海 引用地址:小议开关电源电磁干扰机理与抑制措施

上一篇:一美元DSP微控制器乃数字电源普及起爆剂
下一篇:UPS应用中的误区及过电压防护

推荐阅读最新更新时间:2023-10-18 15:00

维修变频器常识:开关电源电路
  所谓兵马未动,粮草先行。开关电源电路提供变频器的整机控制用电,是变频器正常工作的先决条件。维修变频器,就得先搞明白开关电源电路。   变频器应用的开关电源电路,为直一交一直型的逆变电路,是一种电压和功率的变换器,将直流电压和功率转换为脉冲电压,再整流成为另一种直流电压。输人、输出电压由开关变压器相隔离,开关变压器起到功率传递、电压/电流变换的作用。开关变压器为降压变压器。开关电源的特点如下:   1)开关电源的振荡和调压方式是利用改变脉冲宽度或周期来调整输出电压的,称为时间比例控制,又分为PWM(调宽)和PFM(调频)两种控制方式。   2)从电路的能量转换特性看,可分为正激和反激两种工作方式。开关管饱和导通时, 二次绕组连接
[电源管理]
比把大象放冰箱复杂 电子系统中开关电源要分几步?
电路设计人员在电子系统中打开和关闭电源线路的选项,听起来是件小事,但要成功实施,却需要考虑诸多方面。 在有些电子系统中,需要断开电源线路的连接。例如,可能是切断电池电压,以保持电池电量,或者是断开负载与带电线路的连接。理想情况下,可以使用机械开关来实现这一目的。但是,如果需要通过电子信号进行开关,那么使用电子开关通常更加合适。这类电子开关可能采用MOSFET作为开关元件。除了采用MOSFET的纯分立式解决方案外,还可以使用多种半导体IC来轻松实现电子开关。 图1.使用N沟道MOSFET和独立驱动器电路LTC7003来开关电源线路 首先,必须决定开关元件是N沟道还是P沟道MOSFET。 这两种可能都合适。但是,与P沟
[电源管理]
比把大象放冰箱复杂 电子系统中<font color='red'>开关电源</font>要分几步?
开关电源中LED显示屏的设计与研究
  LED用开关电源属于电网电源供电的、额定电压不超过600V的单路输出式交流-直流外部电源,而室外用的LED开关电源比室内用的环境更严酷,所以选室外用的LED开关电源作为研究的重点,更具代表性。   LED显示屏的研究采用屏幕为8×8的点阵显示,侧重于动态处理方法,由于显示屏幕的局限性,在此次的研究设计中只能显示英文和数字。一个基本的LED屏幕由8行×8列点共64个LED组成,显示屏有共阴和共阳两种连接方式。   设计思路   对由8×8点阵构成的LED显示屏而言,一般数据端连接微处理器的8位并行数据口,而选通端则逐一使能(选通),选择需要点亮的某一列,通过分时复用方式实现动态显示效果。选通方式一般有两种:独立选通和译码选通
[电源管理]
<font color='red'>开关电源</font>中LED显示屏的设计与研究
3D NAND延续摩尔定律 电容耦合效应及可靠度仍为技术关键
  DIGITIMES Research观察,2D NANDFlash制程在物理限制下难度加剧,透过3DNAND Flash制程,无论是效能及储存容量提升上都有突破性的改善。  3D NAND  Flash可谓为 摩尔定律 在半导体内存领域延伸的一项重要技术。下面就随网络通信小编一起来了解一些相关内容吧。    3D NAND  Flash依存储元件储存机制可分浮动闸极(Floating Gate;FG)及电荷缺陷储存(Charge Trap;CT);依不同堆栈结构技术又可分为BiCS、P-BiCS、TCAT、VG-NAND Flash、DC-SF、S-SCG等。   在三星(Samsung)、东芝(Toshiba)、美光(Mi
[网络通信]
基于TOP247Y的反激式单片开关电源研制
单片开关电源具有高集成度、高性价比、最简外围电路、最佳性能指标等特点引起了越来越多人的重视。目前,随着单片开关电源模块的应用,中、小功率开关电源正朝着短、小、轻、薄的方向发展。可广泛用于仪器仪表、计算机、家用电器(如彩电、DVD、数码像机)、自动控制等领域,为新型高效节能电源的推广与普及奠定了基础。开发各种通用型、精密型及特种单片开关电源模块,能够大大提高我国开关电源产品的科技水平和在国内外市场上的竞争能力,创造出巨大的经济效益与社会效益。 一:单片开关电源的发展概况   90年代中、后期,随着集成电路的发展,出现了各种类型的单片开关电源集成电路。它将开关电源中的脉宽控制器、功率输出级、保护电路等集成在一个芯片中,能构成高效率无
[电源管理]
基于TOP247Y的反激式单片<font color='red'>开关电源</font>研制
提升开关电源应用能效的低正向电压沟槽型肖特基整流器
了解如何使用安森美半导体的低正向电压沟槽型肖特基整流器(LVFR)提升开关电源应用的能效,理解如何在无须复杂设计方案的条件下遵从规范机构的强制性能效规范,并观看 在65 W电源应用中应用LVFR产品的演示及能效提升结果。安森美半导体的沟槽型拓扑结构提供更强的导电性能,使正向电压低且产生反向偏置,还产生夹断(pinch-off)效 应,降低热失控风险。LVFR整流器在完整工作温度范围内均提供稳定的开关性能,因而简化设计,使其成为以较高开关频率工作的应用的极佳选择。
[电源管理]
开关电源电路设计的秘笈之如何驾驭噪声电源
无噪声电源并非是偶然设计出来的。一种好的电源布局是在设计时最大程度的缩短实验时间。花费数分钟甚至是数小时的时间来仔细查看电源布局,便可以省去数天的故障排查时间。     图2.1显示的是电源内部一些主要噪声敏感型电路的结构图。将输出电压与一个参考电压进行比较以生成一个误差信号,然后再将该信号与一个斜坡相比较,以生成一个用于驱动功率级的PWM(脉宽调制)信号。 电源噪声主要来自三个地方:误差放大器输入与输出、参考电压以及斜坡。对这些节点进行精心的电气设计和物理设计有助于最大程度地缩短故障诊断时间。一般而言,噪声会与这些低电平电路电容耦合。一种卓越的设计可以确保这些低电平电路的紧密布局,并远离所有开关波形。接地层也具有屏蔽作用。 误
[电源管理]
<font color='red'>开关电源</font>电路设计的秘笈之如何驾驭噪声电源
针对音视频应用的新型模拟器件及综述
  越来越强调“用户体验”的各种数字音视频应用进一步推动了模拟技术的创新,它们不仅增加了对高性能ADC、DAC、前置放大器、运算放大器、模拟开关、模拟多路复用器、电压参考、运算放大器、PLL、比较器、DC/DC转换器等传统模拟器件需求,还推动了新型模拟器件的开发。例如,具有出色的声音质量的MP3音乐播放器和数字收音机离不开高品质的音频放大器;带LED/OLED显示屏、可长时间播放高质量视频画面的多媒体播放器和多媒体手机要求高质量的视频放大器、视频滤波器、视频缓冲器、LED/OLED驱动器;而为了方便快捷地传输无压缩高清晰节目内容、高质量音视频信号,HDMI接口器件正逐渐在更多的HDTV、数字摄像机、数字相机等视频设备中采用。
[模拟电子]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved