EMI抑制方法分析研究

最新更新时间:2011-03-03来源: 互联网关键字:EMI  抑制 手机看文章 扫描二维码
随时随地手机看文章

      研究方向:

      * 四种抑制开关管及二极管EMI的方法

      解决方案:

      * 并联RC吸收电路和串联可饱和磁芯线圈主要抑制高电压和浪涌电流

      * 准谐振技术主要减小开关管上的开关损耗并抑制其电磁干扰

      * LLC串联谐振技术可以抑制开关管及二极管EMI

      摘要:随着电子技术的不断进步,开关电源向高频化、高效化方向迅猛发展,EMI抑制已成为开关电源设计的重要指标。本文结合开关电源中开关管及二极管EMI产生机理,列举出:并接吸收电路、串接可饱和磁芯线圈、传统准谐振技术、LLC串联谐振技术四种抑制EMI的方法,并对其抑制效果进行比较分析。

      1 引言

      电磁干扰( EMI) 就是电磁兼容不足,是破坏性电磁能从一个电子设备通过传导或辐射到另一个电子设备的过程。近年来,开关电源以其频率高、效率高、体积小、输出稳定等优点而迅速发展起来。开关电源已逐步取代了线性稳压电源,广泛应用于计算机、通信、自控系统、家用电器等领域。但是由于开关电源工作在高频状态及其高di/dt 和高dv/dt,使开关电源存在非常突出的缺点——容易产生比较强的电磁干扰(EMI)信号。EMI信号不但具有很宽的频率范围,还具有一定的幅度,经传导和辐射会污染电磁环境,对通信设备和电子产品造成干扰。所以,如何降低甚至消除开关电源中的EMI问题已经成为开关电源设计师们非常关注的问题。本文着重介绍开关电源中开关管及二极管EMI的四种抑制方法。

      2 开关管及二极管EMI产生机理

      开关管工作在硬开关条件下开关电源自身产生电磁干扰的根本原因,就是在其工作过程中的开关管的高速开关及整流二极管的反向恢复产生高 di/dt和高dv/dt,它们产生的浪涌电流和尖峰电压形成了干扰源。开关管工作在硬开关时还会产生高di/dt和高dv/dt,从而产生大的电磁干扰。图1绘出了接感性负载时,开关管工作在硬开关条件下的开关管的开关轨迹,图中虚线为双极性晶体管的安全工作区,如果不改善开关管的开关条件,其开关轨迹很可能会超出安全工作区,导致开关管的损坏。由于开关管的高速开关,使得开关电源中的高频变压器或储能电感等感性负载在开关管导通的瞬间,迫使变压器的初级出现很大的浪涌电流,将造成尖峰电压。开关管在截止期间,高频变压器绕组的漏感引起的电流突变,从而产生反电势E=-Ldi/dt,其值与电流变化率(di/dt)成正比,与漏感量成正比,叠加在关断电压上形成关断电压尖峰,从而形成电磁干扰。此外,开关管上的反向并联二极管的反向恢复特性不好,或者电压尖峰吸收电路的参数选择不当也会造成电磁干扰。由整流二极管的反向恢复引起的干扰源有两个,它们分别是输入整流二极管和输出整流二极管。它们都是由电流的换向引起的干扰。由图2表明,t0=0时二极管导通,二极管的电流迅速增大,但是其管压降不是立即下降,而会出现一个快速的上冲。其原因是在开通过程中,二极管PN结的长基区注入足够的少数载流子,发生电导调制需要一定的时间tr。该电压上冲会导致一个宽带的电磁噪声。而在关断时,存在于PN结长基区的大量过剩少数载流子需要一定时间恢复到平衡状态从而导致很大的反向恢复电流。当t=t1时,PN结开始反向恢复,在t1-t2时间内,其他过剩载流子依靠复合中心复合,回到平衡状态。这时管压降又出现一个负尖刺。通常t2《t1,所以该尖峰是一个非常窄的尖脉冲,产生的电磁噪声比开通时还要强。因此,整流二极管的反向恢复干扰也是开关电源中的一个重要干扰源。

      3 EMI抑制方法

      di/dt和dv/dt是开关电源自身产生电磁干扰的关键因素,减小其中的任何一个都可以减小开关电源中的电磁干扰。由上述可知,di /dt和dv/dt主要是由开关管的快速开关及二极管的反向恢复造成的。所以,如果要抑制开关电源中的EMI就必须解决开关管的快速开关及二极管的反向恢复所带来的问题。

      3.1 并接吸收装置

      采取吸收装置是抑制电磁干扰的好办法。吸收电路的基本原理就是开关在断开时为开关提供旁路,吸收蓄积在寄生分布参数中的能量,从而抑制干扰发生。常用的吸收电路有RC、RCD。此类吸收电路的优点就是结构简单、价格便宜、便于实施,所以是常用的抑制电磁干扰的方法。

      (1)并接RC电路

      在开关管T两端加RC吸收电路,如图3所示。在二次整流回路中的整流二极管D两端加RC吸收电路,如图5所示,抑制浪涌电流。

      (2)并接RCD电路

      在开关管T 两端加RCD吸收电路,如图4所示。

      3.2 串接可饱和磁芯线圈

      二次整流回路中,与整流二极管D串接可饱和磁芯的线圈,如图5所示。可饱和磁芯线圈在通过正常电流      时磁芯饱和,电感量很小,不会影响电路正常上作。一旦电流要反向时,磁芯线圈将产生很大的反电动势,阻止反向电流的上升。因此,将它与二极管D串联就能有效地抑制二极管D的反向浪涌电流。

[page]

      3.3 传统准谐振技术

      一般来说,可以采用软开关技术来解决开关管的问题,如图6所示。图6给出了开关管工作在软开关条件下的开关轨迹。软开关技术主要减小开关管上的开关损耗,也可以抑制开关管上的电磁干扰。在所有的软开关技术中,准谐振抑制开关管上电磁干扰的效果比较好,所以本文以准谐振技术为例,介绍软开关技术抑制EMI。所谓准谐振就是开关管在电压谷底开通,见图7。开关中寄生电感与电容作为谐振元件的一部分,可完全控制开关导通时电流浪涌与断开时电压浪涌的发生。采用这种方式不仅能把开关损耗减到很小,而且能降低噪声。谷底开关要求关断时间中储存在中的能量必须在开关开通时释放掉。它的平均损耗为,由此公式可以看出,减小会导致大大降低,从而减小开关上的应力,提高效率,减小dv/dt,即减小EMI。

      3.4 LLC串联谐振技术

      图8为LLC串联谐振的拓扑结构。从图中可以看出,两个主开关Ql和Q2构成一个半桥结构,其驱动信号是固定50%占空比的互补信号,电感Ls、电容Cs和变压器的励磁电感Lm构成一个LLC谐振网络。在LLC串联谐振变换器中,由于励磁电感Lm串联在谐振回路中,开关频率可以低于LC 的本征谐振频率fs,而只需高于LLC的本征谐振频率fm便可实现主开关的零电压开通。所以,LLC串联谐振可以降低主开关管上的EMI,把电磁辐射干扰 (EMI)减至最少。在LLC谐振拓扑中,只要谐振电流还没有下降到零,频率对输出电压的调节趋势就没有变,即随着频率的下降输出电压将继续上升,同时由于谐振电流的存在,半桥上下两个主开关的零电压开通条件就得以保证。因此,LLC谐振变换器的工作频率有一个下限,即Cs与Ls和Lm的串联谐振频率 fm。在工作频率范围fm

      4 抑制方法对比分析研究

      采用并联RC吸收电路和串联可饱和磁芯线圈均为简单常用的方法,主要是抑制高电压和浪涌电流,起到吸收和缓冲作用,其对EMI的抑制效果相比准谐振技术与LLC串联谐振技术较差。下面着重对准谐振技术与LLC串联谐振技术进行比较分析。在准谐振中加入RCD缓冲电路,即由二极管,电容器和电阻组成的尖峰电压吸收电路,其主要作用是用来吸收MOSFET功率开关管在关断时产生的上升沿尖峰电压能量,减少尖峰电压幅值,防止功率开关管过电压击穿。但是,这样将会增加损耗,而且由于缓冲电路中采用了二极管,也将增加二极管的反向恢复问题。由上述分析可以看出,准谐振技术主要减小开关管上的开关损耗,也可以抑制开关管上的电磁干扰,但是它不能抑制二极管上的电磁干扰,而且当输入电压增大时,频率提高;当输出负载增大时,频率降低,所以它的抑制效果不是很好,一般不能达到人们所希望的结果。所以如果想得到更好的抑制效果,必须解决二极管上的反向恢复问题,这样抑制效果才能令人们满意。LLC串联谐振拓扑结构比准谐振抑制EMI的效果好。其优点已在上面进行了分析。

      5 结语

      随着开关电源技术的不断发展,其体积越来越小,功率密度越来越大,EMI问题已经成为开关电源稳定性的一个关键因素。开关电源内部开关管及二极管是EMI主要发生源。本文主要介绍了四种抑制开关管及二极管EMI的方法并进行了分析对比,目的是找到更为有效的抑制EMI的方法。通过分析对比得出LLC串联谐振技术的抑制效果较好,而且其效率随电压升高而升高,其工作频率随电压变化较大,而随负载的变化较小。


 

关键字:EMI  抑制 编辑:冰封 引用地址:EMI抑制方法分析研究

上一篇:锁相倍频电路的实现
下一篇:减小D类放大器的EMI

推荐阅读最新更新时间:2023-10-18 15:10

应用高频磁环并联阻尼电阻抑制变压器雷电过电压方法
我国电力行业标准规定在变电站的母线和主变端口安装金属氧化物避雷器作为过电压保护措施之一。研究表明,避雷器对雷电过电压有比较好的抑制效果。实际运行中,仍有因雷电过电压导致变压器损坏的事故发生,可见雷电过电压仍是导致变压器绕组匝间绝缘损坏的一个重要原因。 当变电站附近发生近距离雷击时,雷电侵入波传播到变电站的距离短、衰减小。避雷器仅能限制过电压的 幅值,不能降低过电压的陡度,即到达变压器的过电压波仍可能具有很高的陡度,造成变压器绕组上电压分布很不均匀,严重时可造成变压器端部绕组的匝间绝缘损 坏。因此,同时抑制雷电过电压的幅值和陡度对于确保变压器的安全运行具有实际意义,仅用避雷器作为变压器的雷电防护措施并不十分充分。 在利用高频磁环抑制
[电源管理]
应用高频磁环并联阻尼电阻<font color='red'>抑制</font>变压器雷电过电压方法
具有抑制噪声能力的选通脉冲发生器
具有抑制噪声能力的选通脉冲发生器
[模拟电子]
具有<font color='red'>抑制</font>噪声能力的选通脉冲发生器
基于相邻信道抑制/干扰对802.11 WLAN的影响分析
    随着无线联网技术以及其他无线技术在无许可限制的同一频谱范围内的迅速推广应用,Wi-Fi(802.11)产品遭受的射频(RF)干扰与日俱增,从而严重影响无线局域网(WLAN)的数据吞吐性能。与此同时,对诸如多媒体音频与视频、流媒体、WLAN语音以及其他需要服务质量(QoS)功能与较低分组误差率的应用等新型WLAN应用,市场要求更高的数据吞吐速率。由于在环境中对WLAN设备的带内干扰与邻带干扰不断增加,因此射频与数字过滤的设计至关重要。本文分析了邻信道干扰(ACI)的来源以及射频设计实践,通过此实践可以改善WLAN的相邻信道抑制(ACR)而全面提高其性能。     概述     在2.4GHz与5.xGHx无许可限制的
[电源管理]
基于相邻信道<font color='red'>抑制</font>/干扰对802.11 WLAN的影响分析
汽车 ADAS 需要 EMI / EMC 辐射很低的开关转换器
背景信息 到 2020 年,ADAS 市场预计将达到 600 亿美元 。这意味着,在 2014 年到 2020 年这个时间段内,年复合增长率为 22.8%。显然,这对半导体产品而言,意味着巨大的机会! ADAS 是“高级驾驶员辅助系统 (Advanced Driver Assistance Systems)”的英文首字母缩略语,在今天的很多新型汽车中都能经常见到。这类系统常常方便了安全驾驶,如果系统检测到来自周围物体的风险,例如不守规矩的行人、骑行者甚至处于不安全行驶方向的其他车辆,就会向驾驶员发出警报。此外,这类系统通常还会提供动态功能,例如自适应巡航控制、盲点检测、车道偏离警告、驾驶员犯困监视、自动刹车、牵引力控制和夜视。因此
[嵌入式]
buck稳压器如何降低电磁干扰和节省电路板空间
保证高效和紧凑的设计同时遵守国际无线电干扰特别委员会 (CISPR) 等组织提出的严格电磁干扰 (EMI) 要求是一项挑战。因此,元件的选择成为了设计过程的关键。与大多数设计决策一样,在不同组件之间进行选择几乎总是归结为基于您最关键设计目标的权衡评估。以高效及良好的热性能著称的buck稳压器,通常不被视为降低电磁干扰候选项。幸运的是,您有多种选择来降低此类稳压器产生的EMI。幸运的是,仍然有多种措施用以减少这类稳压器所带来的电磁干扰。图1为buck稳压器的示意图。 图1. Buck稳压器示意图 电路板布局注意事项 当设计必须符合EMI要求时,除了选择适当的无源元件值以确保功能设计之外,电路板布局应该是进行设计时
[电源管理]
buck稳压器如何降低电磁干扰和节省电路板空间
Littelfuse推出瞬态抑制二极管数组系列
Littelfuse近日宣布推出了针对可能经历破坏性静电放电(ESD)的电子设备,提供八信道超低电容常规模式和差分模式保护的瞬态抑制二极管数组(SPA二极管)系列产品SP8008。 Littelfuse瞬态抑制二极管数组全球产品经理Tim Micun表示,除了低负载电容和低动态电阻外,此系列瞬态抑制二极管数组,还可以为电路设计师提供紧凑的组件选择,其μDFN-14封装能够节省电路板空间,并支持数据线的直通路由。 SP8008系列低电容瞬态抑制二极管数组,可防范超过IEC 61000-4-2 ±8 kV接触ESD等级的ESD事件,同时避免任何性能减退。 极低的负载电容(仅为0.3pF,典型值),还让这些组件成为保护V-by-One、
[半导体设计/制造]
D类放大器及EMI抑制
   前言   在日新月异的多媒体时代,便携式电子产品,如智能电话、PDA、MP3、PMP、DSC、DVC、NB等多媒体产品,对声音质量的要求越来越严格。另外,由于此类产品为电池供电,除了要求音质的再突破外,也要求整体效率的提升,以达到高效、低功耗的设计目标。   此类产品的音频模块中,除了输入端的信号源和输出端的喇叭或耳机外,音频放大器是一个非常重要的角色。目前广   泛用于便携产品的音频放大器有AB类和D类两种。通常,AB类放大器能够提供好的音质,但效率欠佳,耗电较大;而D类放大器具有高效、低温升效应和高输出功率等特点。    理论分析   AB类放大器的工作原理类似于线性调节器,效率差而
[电源管理]
D类放大器及<font color='red'>EMI</font><font color='red'>抑制</font>
通信开关电源的EMI/EMC设计
   1 引言   通信开关电源一般都采用脉冲宽度调制(PWM)技术,其特点是频率高、效率高、功率密度高、可靠性高,另外还有体积小、重量轻、具有远程监控等优点,因此被广泛地应用于程控交换、光数据传输、无线基站、有线电视系统及IP网络中,是信息技术设备正常工作的核心动力。然而,由于其开关器件工作在高频通断状态,高频的快速瞬变过程本身就是电磁干扰(EMD)源,他产生的电磁干扰EMI信号有很宽的频率范围,又有一定的幅度,经传导和辐射会污染电磁环境,对通信设备和电子产品造成干扰。同时,通信开关电源要有很强的抗电磁干扰的能力,特别是对雷击、浪涌、电网电压、电场、磁场、电磁波、静电放电、脉冲串、电压跌落、射频电磁场传导抗扰性、辐射抗扰
[安防电子]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved