高频电源模块缓冲电路优化探讨

最新更新时间:2011-06-28来源: 互联网关键字:高频  尖峰  探讨 手机看文章 扫描二维码
随时随地手机看文章

摘要:高频电源模块的噪声主要来自功率变换和输出整流滤波电路。ZVZCS PWM全桥变换器实现了开关管的软开关,但其输出整流二极管不是工作在软开关状态,输出整流二极管在换流时,变换器的副边存在寄生振荡。本文讨论其产生原因及抑制办法。
关键词:高频;尖峰;探讨


1 副边整流二极管的反向恢复过程
    实际上已导通的二极管在突然加上反向电压的一段时间内,电流下降到零以后,它并不立刻停止导通,还处于反向低阻状态。此时在反向电压作用下,载流子进入复合过程,于是在反方向继续流过电流;当载流子复合完毕,反向电流才迅速衰减到零。这个阶段就是二极管的反向恢复过程,如图1所示。

    在反向电流衰减过程中,电路产生强烈的过渡过程,它在关断元件两端产生极高的过电压,即换流过电压;另外,因电流衰减时在关断元件上同时存在电流与电压,在元件中瞬时产生极大的功率,即所谓关断功率。
    二极管振荡的等效电路如图2所示。

    图中,Lk为变压器的漏感,Lp为二极管的串联寄生电感,Cp为二极管的并联寄生电容,VD为理想二极管。
    当副边电压为零时,在全桥整流器中四个二极管全部导通,输出滤波电感电流处于自然续流状态。而当副边电压变化为高电压U2时,整流桥中有两只二极管要关断,两只二极管继续导通。这时变压器的漏感和整流管的串联寄生电感Lp就开始与整流管的并联寄生电容Cp之间产生寄生振荡。二极管电流与电压波形呈指数衰减的高频振荡波形,在二极管关断瞬间会产生很高反向电压浪涌。它的存在不但增加了二极管的功耗,而且也对输出电能质量产生很大影响。特别是在大功率应用中,巨大的电压尖峰很有可能造成二极管的过压击穿。因此在设计中应予以特别关注。


2 减小电压尖峰的对策
    整流二极管的反向恢复时间除由器件本身的性能决定外,还受许多电路因素的影响。包括其导通时流过的正向电流的大小、正向电流的下降速率、反向电压的大小以及反向电压的上升速率等。
    反向电流i是产生电压尖峰的根源,减小i的数值无疑是抑制尖峰的根本措施。选用合适的整流二极管,例如:快恢复二极管,虽然反向恢复时间短,反向恢复损耗小,但恢复特性较硬,电压尖峰仍然很大。可适当选用恢复特性相对较软(tb/ta值小)的软快恢复二极管。另外适当加大二极管电流容量或者多管并联以减小通过每只管的正向电流都能对抑制电压尖峰起到积极的影响。合理的布局布线,减小变压器漏感及引线电感,从而减小振荡也是一个抑制尖峰的根本方法。
    当器件选好,布线完毕后,我们还能通过外加缓冲电路的办法抑制电压尖峰。常用的缓冲电路有以下几种:
    (1)RC吸收电路
    解决功率二极管反向恢复问题最常见的办法是采用RC吸收电路,它是在每个二极管上并联一个R和C的串联支路。RC吸收电路如图3所示二极管反向关断时,寄生电感中的能量对寄生电容充电,同时还通过吸收电阻R对吸收电容C充电。在吸收同样能量的情况下,吸收电容越大,其上的电压就越小;当二极管快速正向导通时,C通过R放电,能量的大部分将消耗在R上。虽然这种吸收网络能够有效的抑制反向电压尖峰,但是它是有损耗的,相当于把整流二极管的关断损耗转移到了RC吸收电路上,不利于提高变换器的效率。
    (2)有源钳位
    为了降低损耗,有人提出了一种主动钳位电路,它由钳位开关管TVs、钳位二极管VDs和钳位电容Cs组成,Cs的容量较大。如图4所示。

    主动钳位缓冲电路可以将整流桥上的电压钳位在一个适当的电压上。而且因为该缓冲电路中没有电阻,故不存在损耗。同时TVs零电压开关,也没有开关损耗,因此主动钳位缓冲电路的损耗比RC吸收电路小的多。但该方法需要增加一套控制电路和一个有源器件TVs,增加了系统的复杂性,而降低了可靠性。
    (3)串饱和电感(尖峰抑制器)
    串联饱和电感(尖峰抑制器)是解决二极管反向恢复问题的另一种常用方法,如图5所示。

    在正常流通时,抑制噪声的磁芯饱和,具有很低的电感,几乎不存储能量。而在电流减少并试图过零时,矩形磁滞回线的磁芯退出饱和,磁芯表现出很大电感。这很大的电感阻止了电流相反方向变化,抑制了反向电流,也就消除了反向电流引起的尖峰。通常采用矩形磁滞回线材料的尖峰抑制器实现尖峰抑制。

    当二极管导通时,流过电流Io(图6(a)中“I”),尖峰抑制器饱和(图6(b)中“I”),磁导率为空气磁导率μo,尖峰抑制器等效电感很小,相当于导线电感。

    当二极管关断时,其正向电流由Io减少到零(图(a)中“II”)时,磁芯沿着磁化曲线“II”去磁,直到纵坐标上Br值。磁芯仍呈现低阻抗。由于二极管存在存储电荷仍然处于导通状态,而电路中存在反向电压,试图流过反向电流。如果没有尖峰抑制器,在反向电压的作用下,流过很大的反向恢复电流(图(a)中虚线所示),此大电流在寄生电感中存储能量,然后进入反向恢复时间trr,二极管反向电流下降。此反向恢复电流下降时造成很大的电压尖峰和电路噪声。当串入尖峰抑制器时,二极管在反向电压作用下开始试图流过反向电流时,尖峰抑制器退出饱和,呈现很大的阻抗,只有极小的反向电流(图(a)中过零阴影部分“III”)使磁芯沿磁化曲线“III”段去磁,这里磁导率非常高,视在电感很大,有效地阻止了高di/dt的反向恢复电流,使硬恢复变成软恢复,使得噪声大大减少。磁化能量绝大部分变成了磁滞损耗和涡流损耗。
    如果在二极管反向恢复时间内,磁芯的伏秒足够大,即二极管反向阻断(图(a)中“IV”)前没有反向饱和(图(b)中“IV”点),二极管完全恢复,则噪声基本上可以消除。
    当二极管再次导通(图(a)中“V”)时,磁芯仍处于高阻抗,减少二极管正向电流上升率。在大功率二极管中,有利于改善二极管的正向恢复特性。磁芯被正向电流经“V”向饱和磁化。以后重复“I”~“V”的过程。从工作原理可以看到,磁珠具有优良的抑制噪声性能。要抑制电路中的噪声必须满足下式:

   


3 结束语
    以上方案在抑制电压尖峰的同时,减小了缓冲电路的损耗,但增加了磁性元件的数量。

关键字:高频  尖峰  探讨 编辑:冰封 引用地址:高频电源模块缓冲电路优化探讨

上一篇:双端拓扑与仿电流感测信号技术在宽或高输入范围DC/DC降压系统中的应用
下一篇:DC-DC转换器的电源转换效率和功率电感性能的解决方案

推荐阅读最新更新时间:2023-10-18 15:24

现场总线PROFIBUS不稳定因素的探讨
现场总线PROFIBUS是工业通信系统,它是使用一类传输介质(如具有位串传输的铜缆、光纤或无线等),用比特串传输,将分散的现场设备(如传感器、执行机构、驱动器、变送器等)连接到中央控制或管理系统。尽管其制造厂采取了一些措施,使得它的可靠性较高,但还有许多外部因素也会造成其不稳定,从而影响数据的可靠传输,这将会造成设备的突然停止。要提高现场总线PROFIBUS的可靠性,一方面要求现场总线PROFIBUS的质量和相关设备的抗干扰能力;另一方面,要求工程设计、安装施工和使用维护中引起高度重视,多方配合才能完善解决问题,有效地增强现场总线的可靠性。它的应用提高了自动化过程生产力和灵活性,同时为分布式自动化系统的构造建立了基本的前提条件。它成
[嵌入式]
高频小信号LC 谐振放大器的设计
本文介绍了高频小信号LC谐振放大器的设计思路与具体电路实现,主要由衰减网络、LC谐振放大、电压跟随和电源四大模块组成。衰减器采用电阻式π型网络实现;LC谐振放大中选用功耗小的2N2222型三极管进行两级放大,LC谐振部分为放大器的负载;电压跟随采用集成运放OPA355,以实现电路阻抗的良好匹配;为了给放大器工作提供稳压电源,采用LM317稳压芯片设计了一个电源。经测试,放大器低功耗、高增益,具有良好的选择性。 0引言 高频小信号放大器是放大中心频率在几百兆赫兹到几百千兆赫兹的高频小信号的放大器。它在通信电子系统中有着重要的用途,通常应用在广播、电视、通信、雷达等无线通信的前段接收机中,其对接收机的灵敏度、抗干扰性和选择性等
[电源管理]
<font color='red'>高频</font>小信号LC 谐振放大器的设计
高频准谐振反激式控制器NCP1340实现高密度小巧适配器
随着生活模式的改变,人们经常随身携带多种便携设备,例如超薄型计算机、 平板电脑以及智能手机等,用于工作或娱乐。但往往便携设备的适配器又大又重,既然现今的计算机和手机都这么轻巧,市场自然需求更小外形的适配器。安森美半导体的NCP1340能解决此问题,设计高密度的适配器。本研讨会将谈论NCP1340的特点、高密度适配器参考设计和测试结果,以及设计高密度高开关频率AC-DC适配器应注意的事项。 iframe src="http://player.youku.com/embed/XMTg3ODA5NTUzNg==" width="510" height="498" frameborder="0" /iframe
[电源管理]
可携式产品电源技术与趋势探讨
摘 要: 随着手机、数码相机、笔记本计算机、多媒体播放器、可携式导航设备等消费电子产品的普及,用户希望它们集成的功能越来越多,价格越来越便宜,使用更加便捷,但是对于可携式电源系统的设计师来说,他们所要面临的问题是如何延长电池的使用寿命,能够快速方便的充电,安全高效地使用等,他们不但要考虑电源本身的参数设计,还要考虑电器设计、电源管理设计、PCB设计、电磁相容性设计、热设计、安全性设计等技术。 近几年来,由于消费电子产品的兴起,带动电源芯片市场成为电子领域持续关注的热点之一,据英国IMS Research公司预测资料,全球电源IC市场的规模今后5年内将以年均10%的速度扩大,到2011年该市场的销售额将达到15
[电源管理]
解决几个主要设计难题的思路探讨
尽管中国设计能力不断提升,但具体设计过程中的一些“老大难”问题依然困扰着广大工程师。对于EMI/EMC、低噪声设计、RF电路、信号处理、电源管理等实际上是相互关联的,电路匹配和PCB布局布线是解决这些问题的关键一步,与理论基础和经验积累分不开。当然,“老大难”还常常意味着更多研发成本和投入,因此我们需要一些新思路和新方法,必要时可以借助外部资源和力量,这样才能在有限研发预算内将设计做得尽量完美。 “终极”降噪案例:克服GPS应用的EMI EMI问题普遍存在于电子系统中,而在高频、无线系统中往往更加突出。对于如今热门的GPS应用,如何解决EMI问题意义显得更加重大,因为GPS卫星距离地面上万公里,信号到地面非常弱,不及手
[半导体设计/制造]
电磁兼容测量结果可追溯性技术探讨
概述: 电磁兼容测量中涉及到的频率括了地表面波、反射波、直线传播等所有无线电波的传播特性。无线电波因其传播具有较强的方向性和反射性,往往会引起电磁兼容测量结果的不稳定甚至有较大的偏差,许多客户对此也有较多的抱怨,经常发现在各实验室测量的电磁兼容结果不一致,导致对测量结果的使用无所适从,甚至造成经济损失。 可见在电磁兼容测量实验室,非常有必要对测量过程和测量结果进行可追溯性研究、分析和控制,一是能提供准确可再现的测量数据,对客户负责,二是通过可追溯性控制,再现试验和测量过程,验证测量结果,对实验室的风险进行预见和预防。为了保证测量结果的准确和可追溯,C工SPR16号出版物详细规定了用于电磁兼容测量的试验场地、仪器设备参数的要求,各
[电源管理]
电磁兼容测量结果可追溯性技术<font color='red'>探讨</font>
高频开关电源电路原理图文实例
第一节 高频开关 电源电路 原理 高频开关 电源由以下几个部分组成: 一、主电路 从交流电网输入、直流输出的全过程,包括: 1、输入滤波器:其作用是将电网存在的杂波过滤,同时也阻碍本机产生的杂波反馈到公共电网。 2、整流与滤波:将电网交流电源直接整流为较平滑的直流电,以供下一级变换。 3、逆变:将整流后的直流电变为高频交流电,这是 高频开关 电源的核心部分,频率越高,体积、重量与输出功率之比越小。 4、输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。 二、控制电路 一方面从输出端取样,经与设定标准进行比较,然后去控制逆变器,改变其频率或脉宽,达到输出稳定,另一方面,根据测试电路提供的资料,经保护电路鉴别,
[电源管理]
高频开关电源变压器用功率铁氧体的制备技术
摘要:根据高频开关电源变压器用PC44、PC50等功率铁氧体材料的高起始磁导率(μi)、饱和磁通密度(Bs)、低功率损耗(Rc)等特性要求,分别讨论了配方、添加物和烧结工艺等关键技术对该类材料制备的影响。 O 引言 随着电力电子技术的发展,进一步增加了对电子设备的多功能化和高密度化的需求,作为电子设备不可缺少的开关电源,迫切要求实现小型轻量化。而为了使开关电源小型化,首先要求开关电源变压器小型化。工作频率更高的PC44及PC50功率铁氧体材料和磁芯就是为适应这种需求而发展起来的。 铁氧体的性能并不是仅仅由其化学成分及晶体结构决定的,还需要研究和控制它们的密度、晶粒尺寸、气孔率以及它们在晶粒内部和晶粒之间的分布等。因此,制
[应用]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved