晶体硅太阳电池减反射膜的研究

最新更新时间:2011-08-09来源: chinaaet关键字:太阳电池  PECVD减反射  氮化硅薄膜 手机看文章 扫描二维码
随时随地手机看文章
    太阳能光伏技术是将太阳能转化为电力的技术,其核心是半导体物质的光电效应。最常用的半导体材料是硅。光伏电池由P型和N型半导体构成,一个为正极,一个为负极。阳光照射在半导体上时,两极交界处产生电流,阳光强度越大,电流就越强。太阳能光伏系统不仅只在强烈阳光下运作,在阴天也能发电。晶体硅是当前太阳能光伏电池的主流。目前晶体硅电池光电转换效率可以达到20%,并已实现大规模生产。除效率外,光伏电池的厚度也很重要。薄的硅片(wafer)意味着较少的硅材料消耗,从而可降低成本。在查阅了大量国内外相关文献,并结合我国对晶体硅太阳电池技术开发的迫切需要,在制备太阳电池减反射膜(氮化硅薄膜)的工艺中,对气体流量比、微波功率、沉积压强和温度对减反射膜性质的影响进行了研究,通过大量有效的工作及一系列工艺数据,得出了制作减反射膜,分析了氮化硅薄膜的相对最佳沉积参数和优化工艺。

1 减反射膜原理
    在了解减反射薄膜原理之前,要先了解几个简单的概念:第一,光在两种媒质界面上的振幅反射系数为(1-ρ)/(1+ρ),其中ρ为界面处两折射率之比。第二,若反射光存在于折射率比相邻媒质更低的媒质内,则相移为180°;若该媒质的折射率高于相邻媒质的折射率,则相移为零。第三,光因受薄膜上下两个表面的反射而分成2个分量,这2个分量将按如下方式重新合并,即当它们的相对相移为180°时,合振幅便是2个分量振幅之差;称为两光束发生相消干涉。


    如图1所示膜有2个界面就有2个矢量,每个矢量表示一个界面上的振幅反射系数。如果膜层的折射率低于基片的折射率,则每个界面上的反射系数都为负值,这表明相位变化为180°。当膜层的相位厚度为180°时,即膜层的光学厚度为某一波长的1/4时,则2个矢量的方向完全相反,合矢量便有最小值。如果矢量的模相等,则对该波长而言;2个矢量将完全抵消,于是反射率为零。镀制有减反射薄膜的太阳电池的反射率R为:
   
    式中:R1,R2分别为外界介质与膜和膜与硅表面上的菲涅尔反射系数;△为膜层厚度引起的位相角。其中:
   
    式中:n,n0,nSi分别为外界介质、膜层和硅的折射率;λ入射光的波长;d为膜层的实际厚度;nd膜层的光学厚度。当波长λ0为光的垂直入射时,
   
   
    因此,完善的单层减反射薄膜条件是膜层的光学厚度为1/4波长,其折射率为基片和入射媒质折射率相乘积的平方根。

2 减反射薄膜的材料
    要想将光电池对光反~射引起的损失减至最小,因此必须使反射系数ρ最小,如上分析,对单层减反射薄膜必须满足:
   
    对硅光电池来讲,如果光直接从空气射入电池,n0=1,nSi=3.8,则折射率为1.9时的介质膜为最佳,但是它仅仅对特定波长的单色光为最佳,对于一般的复色光源,邻近特定波长的光,在确定的介质材料和厚度下,由于条件不完全满足,反射光只可能部分地被抵消,虽然ρ有所增大,但对波长较远的光,起不到减反射作用,因此在设计中应选取适当的n1材料和制作合适的膜厚t,才能使其波长落在光源辐射最强的波长附近。
    几种能够作为减反射薄膜的材料和它的折射率列在表1中,可供参考:


    由于氮化硅的折射率为1.9,是很理想的减反射膜材料,所以研究中采用的就是这种材质的减反射膜。氮化硅薄膜的折射率高,其中晶态氮化硅薄膜的折射率为2.0;非晶态氮化硅薄膜的折射率会在其左右一定范围内波动。氮化硅薄膜的厚度和颜色有对应关系,如表2所示。


    厚度可用椭圆偏振仪精确测量。在能够估计厚度范围的情况下,可根据氮化硅薄膜的颜色和表中所列的颜色进行比较,以此来确定氮化硅膜的大约厚度。图2~图4分别为镀膜前、80 nm左右SiN薄膜和65 nm左右的SiN薄膜图示。



3 实验与讨论
    本研究使用德国ROTH&RAU科学仪器研制中心制造的PECVD-SiNA1型设备制备不同厚度的SiN薄膜。
    测试设备用:SENTECH生产SE-400ADV的激光偏振仪;SEMILAB生产的WT-2000的少子寿命测试仪。
    实验材料:材料采用P型(100)的直拉的125 mmx125 mm单晶硅片,电阻率约为0.5~3 Ω·cm,厚度200+50μm。在实验前经过硅片清洗和制绒,磷扩散,等离子刻蚀,去除磷硅玻璃等工艺。
    实验用到的气体有SiH4,NH3,N2。腐蚀溶液为HF酸。SiH4和NH3气体分别用于等离子体增强型化学气相沉积法沉积SiN薄膜,为安全起见,SiH4由氮气稀释至10%,NH3浓度为99.999%。N2主要用于在沉积完薄膜后清洗气路和反应室,它们的纯度都为99.999%。
    PECVD系统主要工艺参数包括射频功率、反应气体组分、气体总流量、衬底温度和反应压力等,这些参数对SiN薄膜的性能有很大影响。
    由于影响PECVD系统淀积效果的参数很多,如气体流量和流量比,工艺腔温度,射频功率,沉积气压等等,而且对不同的PECVD设备会有不同的最佳参数,我们有必要就主要的控制参数进行研究,摸索出在这台PECVD设备上淀积氮化硅薄膜的最佳工艺参数组合。
    在此一共选取了沉积压强(6组)、微波功率(5组)、气体流量比(11组)、工艺腔温度(4组)四个变量。采取改变其中的变量其他三个变量不变的实验方法,最后得出各个变量主要对电池片哪些参数有影响,提出一个可行的最优实验方案。
    通过查阅相关资料,我们总结出SiN薄膜较好的各参数范围:薄膜厚度在70~80 nm之间,膜厚差应小于5 nm,折射率2.0~2.1之间,4 nd在630 nm左右,少子寿命越大越好,腐蚀速率越小。
    根据资料和实际经验,从以上几组实验中找出了一些实验效果比较好的参数,然后共得到8组优化参数,这8组实验做完之后,再用1:5的氢氟酸对制得薄膜进行腐蚀,实验具体参数如表3,实验结果如表4。

      


    图5~图8给出实验结果。采用平板式PECVD法制备氮化硅薄膜时,沉积条件对氮化硅薄膜特性的影响如下:


    (1)压强主要对折射率和腐蚀速率有影响:随着压强的升高(见图5),折射率上升而腐蚀速率下降(见图6)。压强增大时,膜的均匀性下降(见图7)。
    (2)功率主要对膜厚和膜厚差有影响:随着功率的增大,膜厚增大而膜厚差下降(见图8)。
    (3)流量比主要对折射率、膜厚和膜厚差都有影响:随着流量比的升高,折射率下降而膜厚和膜厚差都是先升后降(见图8)。
    (4)温度对薄膜的各个参数影响都不大。温度上升,折射率增大(见图5),腐蚀速度下降(见图6)。

4 结语
    经过实验分析,在温度为430℃,压强为2.1×10-1mbar,功率为3 200 W,流量比为3.07,制备的薄膜具有良好特性,是制作减反射膜的良好的方案。

关键字:太阳电池  PECVD减反射  氮化硅薄膜 编辑:探路者 引用地址:晶体硅太阳电池减反射膜的研究

上一篇:详解电动汽车的非接触充电方式及原理
下一篇:太阳能电池板是如何“炼”成的?

推荐阅读最新更新时间:2023-10-18 15:33

柔性非晶硅薄膜太阳能电池技术
在过去的几十年中,人类经济活动的持续高速发展使得电力需求迅速增加。太阳电池是一种利用光生伏特效应将太阳能能直接转换为电能的半导体器件,很容易实现并网发电或作为独立能源。众所周知,太阳电池发电具有许多优点,如安全可靠,无噪声,无污染,能量随处可得,不受无需消耗燃料、无机械转动部件、故障率低、维护方便、可以无人值守、规模大小随意、可以方便地与建筑物相结合等,这些优点都是常规发电所不及的。 目前,太阳电池发电在航天、通讯及微电子领域已占据了不可替代的位置,但在社会整体能源结构中所占比例很小,主要原因是太阳电池成本较高,要使其真正成为能源体系的组成部分,必须大幅度降低成本。薄膜太阳电池在降低成本方面比晶体硅(单晶或多晶)太阳
[电源管理]
晶体硅太阳电池反射膜的研究
    太阳能光伏技术是将太阳能转化为电力的技术,其核心是半导体物质的光电效应。最常用的半导体材料是硅。光伏电池由P型和N型半导体构成,一个为正极,一个为负极。阳光照射在半导体上时,两极交界处产生电流,阳光强度越大,电流就越强。太阳能光伏系统不仅只在强烈阳光下运作,在阴天也能发电。晶体硅是当前太阳能光伏电池的主流。目前晶体硅电池光电转换效率可以达到20%,并已实现大规模生产。除效率外,光伏电池的厚度也很重要。薄的硅片(wafer)意味着较少的硅材料消耗,从而可降低成本。在查阅了大量国内外相关文献,并结合我国对晶体硅太阳电池技术开发的迫切需要,在制备太阳电池减反射膜(氮化硅薄膜)的工艺中,对气体流量比、微波功率、沉积压强和温度对减反射
[电源管理]
晶体硅<font color='red'>太阳电池</font>减<font color='red'>反射</font>膜的研究
准单晶-太阳电池技术概况
1.准单晶技术简介 1.1传统的单晶硅和多晶硅技术 我们知道,单晶硅一般是采用直拉法(CZ法)制得,用特定晶向的单晶籽晶进行引晶,经过旋转提拉得到目标晶向的单晶硅棒,所得产品仅含一个晶粒,具有低缺陷、高转换效率等特点。目前,单晶硅电池片大规模生产的转换效率已经达到18%,但是该方法对原料及操作要求高,且单次投料少,产品成本较高,太阳能电池衰减较大。多晶硅主要是采用定向凝固方法制得,单次投料量大,具有易操作、低成本等特点,电池片衰减比单晶硅片小很多,但在传统铸锭条件下,在铸锭多晶中往往含有大量晶界及缺陷,使得多晶硅太阳能电池的转换效率较单晶硅电池约低1.5%~2%。 1.2准单晶技术 准单晶技术的核心是单晶铸锭技术,
[电源管理]
准单晶-<font color='red'>太阳电池</font>技术概况
柔性非晶硅薄膜太阳能电池技术
摘要:柔性衬底薄膜太阳能电池作为太阳电池的一个新品种,近年来开始受到人们的重视,世界上许多公司竞相开发研究。柔性太阳电池与平板式晶体硅、玻璃衬底的薄膜电池等硬衬底电池相比,其最大的特点是重量轻,可折叠,不易破碎,并具有较高的质量比功率(500W/kg),故能够安装在流线型汽车的顶部,房屋等建筑物的楼顶与外墙面,以及对地观测的平流层飞艇表面,应用前景光明。和玻璃衬底上的薄膜电池相比,主要基于金属膜和有机聚脂膜的柔性衬底薄膜太阳能电池的制备方法有很大的不同。世界上从事柔性衬底薄膜太阳能电池的研制生产的主要单位是美国的联合太阳能公司(United Solar),欧洲的VHF-technologies公司,和日本的Sharp公司,Sany
[电源管理]
小广播
热门活动
换一批
更多
最新电源管理文章
更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved