电力电子技术是一门新兴技术,它是由电力学、电子学和控制理论三个学科交叉而成的,在电气自动化专业中已成为一门专业基础性强且与生产紧密联系的不可缺少的专业基础课。本课程体现了弱电对强电的控制,又具有很强的实践性。能够理论联系实际,在培养自动化专业人才中占有重要地位。它包括了晶闸管的结构和分类、晶闸管的过电压和过电流保护方法、可控整流电路、晶闸管有源逆变电路、晶闸管无源逆变电路、PWM控制技术、交流调压、直流斩波以及变频电路的工作原理。
在电力电子技术中,可控整流电路是非常重要的章节,整流电路是将交流电变为直流电的电路,其应用非常广泛。工业中大量应用的各种直流电动机的调速均采用电力电子装置;电气化铁道(电气机车、磁悬浮列车等)、电动汽车、飞机、船舶、电梯等交通运输工具中也广泛采用整流电力电子技术;各种电子装置如通信设备中的程控交换机所用的直流电源、大型计算机所需的工作电源、微型计算机内部的电源都可以利用整流电路构成的直流电源供电,可以说有电源的地方就有电力电子技术的设备。
二、电力电子技术课程中的整流电路
整流电路按组成的器件不同,可分为不可控、半控与全控三种,利用晶闸管半导体器件构成的主要有半控和全控整流电路;按电路接线方式可分为桥式和零式整流电路;按交流输入相数又可分为单相、多相(主要是三相)整流电路。
根据学生学习接受知识的规律,将知识点完整、准确、简明的表述出来、将原理知识尽可能简单化、通俗化、直观化,笔者在教学中进行了探讨和研究,依照整流电路三种形式的电路特性,负载形式,将主要的参数计算及主要特点分别制作成单相整流电路归纳表(见表1)和三相整流电路归纳表(见表2)。
表中,α——整流电路控制角,UFM、UKM——晶体管承受最大正反向电压,U2——变压器付边电压有效值,I2——变压器付边电流有效值,Ud——输出电压平均值,Id——输出电流平均值。IT——晶体管电流有效值,θ——晶体管的导通角。
(二)整流电路输出电压平均值的计算
整流电路输出电压是指电路输出的平均电压,该参数反映了电路输出的大小,通常我们是以此选择整流电路,因此是一个很重要的参数。要让学生记住输出整流电压的计算公式,从表中可发现,对于单相整流电路无论是电阻性负载还是电感性负载,其输出电压均可表示为Ud=AU2(1+Cosα)/2,其中A为系数,若是单相半波,A=0.45,若是单相桥式,A=0.9(为半波的两倍),只有单相全控桥电感性负载是特殊情况,其输出电压为Ud=0.9u2Cosα。同样对于三相整流电路,在Ud波形连续(Ud波形连续是指在一个周期内均有整流电压输出,未出现Ud=0)时,输出电压Ud=AU2Cosα。A为系数,当电路为半波时,A=1.17,当电路为全控桥时,A=2.34(为半波的两倍),只有三相半控桥是特殊情况,其输出电压为Ud=2.34U2(1+Cosα)/2。
(三)整流电路输出电流平均值的计算
无论是单相还是三相,无论是电阻性负载还是电感性负载,整流电路输出电流均为
Id=Ud/Rd(Rd为负载中的电阻值)。
(四)晶闸管承受最大正反向电压的计算
该参数是选择晶闸管的一个重要参数,从表中可见,对单相整流电路,晶闸管承受最大电压为电源相电压峰值即√2U2,而对三相电路,晶闸管承受最大电压为电源线电压峰值即√6U2:(因为是三相,线电压与相电压相差了√3倍)。
(五)输出电压Ud波形连续与否
从表1中可见,对于单相整流电路当晶闸管的控制角α>0°时,ud的波形就不连续,只有单相全控桥电感性负载,α>90°时,ud的波形不连续。同样从表2可见,对于三相整流电路,三相半波电路是以α=30°。作为输出电压波形连续与否的分界点;而三相桥式整流电路(包括半控桥和全控桥)均是以α=60°作为输出电压波形连续与否的分界点。
从表中还可找出其它参数的计算规律,因篇幅有限,在这就不一一列举。
通过这组单相、三相整流电路的归纳表,可帮助学生较快地掌握各种整流电路的结构、电路特点、不同负载时的有关计算公式,为更好地掌握电力电子技术基础理论知识提供了很好的帮助。
上一篇:集成运算放大器构成交流放大电路的分析和设计
下一篇:优化稳压器的输出电压精度
推荐阅读最新更新时间:2023-10-18 15:41
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC