空载开关时;电路变成这两个工作模式:
上图是高边开关;低扁关断状态。下图是低边开关;高边关断状态。两个状态组成一完整开关周期。这个现象会导致半、全桥空载时发热。它不仅发生在开路状态;而且还会发生在容性负载和硬开关电路里。适当的控制“开”的速度;防制上下之通是必要的。
高端FET开关状态下;导通再关闭后,由于CDS1、CDS2的电容储能,Q1关断;输出仍为+Vbus。此时;Q1栅电压为0V,但是;Q1并没因此而承受电压。即Q1是零电压关断;关断过程;栅电压没有平台!没有弥勒效应区!经过一段死区时间后;低端FET导通,此时此刻;高端早已关断的FET的D-S终于承受了电压!虽然是空载;但在这过程中发生了一系列的电压电流变化,看图解!
高边FET导通后;向Cds2充电/Cds1放电,输出达到正电源电压。FET关断时;由于电容无放电回路(Q2断),电容电压保持不变,Q1零压管断(无弥勒效应)。Q1关后;仍由于电容做用而不承受电压。
用正驱动脉冲开启Q2,当栅电压达到门坎时;Q2开始通。Cds2短路放电;Cds1充电。显然;Q2是硬开通。Q1此时开始实质性承受电压。由于Cdg1的充电;导致在Q1驱动栅电阻上产生电压。当感应电压达到门坎时;Q1/Q2瞬间发生上下直通。
半个周期描述结束,在此思考下半个周期的工作过程。
低端的管子是硬开通软关断;高端皆然。这里引用网友helen闸的实测波形,供大家讨论。注意:“ON”是;有明显的弥勒效应平台,“OFF”时;没有。(电源网原创转载注明出处)
阻性负载:
大体和容性相当,只是半桥输出在死区时间里;电压是电源电压的一般(如果同同样的FET做的半、全桥的话)。
由于FET在关断后;没有承受所有电压,FET实际的弥勒效应略微减小。看这图:
现实负载中;除了电容/电感/电阻性负载外。还有一类负载;叫高分布参数负载。如大功率PFC/电机/PDP驱动等等。它们大体可以等效成这样两种拓朴(单级或多级链接)
当你用方波驱动这样的负载时;电压或电流高/射频分量会发生反射。地线上充满梳装噪音,在方波沿上;同时跳动着电流尖刺。驱动速度越高;间刺越大。(这和我们用不同阻抗同轴电缆连接电视;而产生重影是一个道理)如果拉开波型;可以发现,第一个电流尖峰是最高且冒似正弦。这个现实的脉冲电流就是这个网络产生的。
用示波器看。将探头和地线夹短在一起时;测得的噪音;主要是共模分量。用探头和地线夹夹在地线的不同部位测得的是差/共模噪音之和。用示波器看时;要求它有至少100M以上的带宽。低于10M,大多数噪音将看不见,低于1M时;一切都干净了。
这时候;大体有三种选择:
1)串低分布参数的电感,使分布电容的作用减到最小。
它对负载端的分布参数抑制有效;对FET自身寄生电容没作用。
2)用低分布参数的元件做开关,开的足够快。快速开关后;连联线都可以被等效成电感了。
效率提高了,元件要求高了,需要增加EMI/C网络了。
3)开慢些;再慢些,所有寄生参数变的越来越无足轻重了。
牺牲了效率,提高了EMI/C品质。
4)用软开关拓朴
元件增加了;效率提高了;噪音下来了;成本提高了。
上一篇:USB驱动器电源风险产生的原因和应对之策
下一篇:内置片内电阻的双路差动放大器实现精密ADC驱动器
推荐阅读最新更新时间:2023-10-18 15:42
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况
- 答题赢好礼|世健探索:水质检测为人类的安全保驾护航
- TI有奖直播|借助Sitara™ AM263x MCU 创造电气化的未来
- 【泰克注册观看有礼】 PCI-SIG 前主席解析:PCI Express5.0测试方案和测量挑战
- 泰克直播:带您了解您所不知道的示波器使用技巧
- 有奖评测+DIY:玩转新版1.3元单片机CH554,赢以太网分析仪器/USB分析仪
- Digi-Key KOL视频来袭~欢迎进入MicroPython的奇妙世界
- Microchip直播|如何在ADAS系统中解决精密授时挑战
- ADI基于ADPD188BI的烟雾探测器集成解决方案 有奖直播 5月13日上午10:00-11:30 为您揭晓!