节能微控制器设计可延长电池寿命

最新更新时间:2011-09-15来源: 互联网关键字:节能微控制器  电池寿命 手机看文章 扫描二维码
随时随地手机看文章
在设计电池供电产品时,人们显然希望电池寿命尽可能长些。能源敏感的产品应用大致分为能源计量系统、家庭与楼宇自动化、安全和医疗系统(图1)。这些产品通常会围绕一个微控制器(MCU),必须用单个原电池工作很长时间。在某些应用中,更换电池很困难甚至是不可能的,即使在其它普通应用中,用户也不大愿意支付更换电池的成本。

  这类应用中采用的是在极低占空比下工作的微处理器,它在“深度睡眠”状态下的时间可能占了99%甚至更高(达到99.9%也不罕见)。微处理器在一个周期循环或在回应某些刺激时被“唤醒”来执行操作,并返回到睡眠状态中。由于它们花了如此多时间在睡眠状态,很明显,获得更长电池寿命的关键是在掉电状态下的
电流消耗。不过,同一节电池的使用寿命为3或4年与超过10年、延至20年甚至更长之间的区别在于,要密切注意这个任务如何使用MCU资源的各个方面,以及MCU本身是如何设计成以各种方式减少能耗的。

  一节单电池可用20年

  CR2032纽扣电池广泛用于小型MCU(如远程环境传感器)中,这是一种锂/二氧化锰3V原电池。典型的供应商,如柯达(参考文献1)将其容量*为230mAh到2V的终点
电压能力为5.6k?(约为0.5mA)。如果是那样的话,电池寿命将为400小时,相比之下,能源敏感的应用可使使用寿命达到20万小时。
 
图1:人们期望新一代的计量产品能在二十年里工作无人看管。

  这种特殊的电池具有很好的使用寿命或自放电率,数据表显示10年之后其容量仍达90%。非常相似的是,这相当于连续充电约0.25?A,如果能够达到10到20年的电池寿命,那么它可以满足应用的一般要求。

  伴随电池寿命的是有限的电荷数,设计者必须在MCU运行的所有阶段减少产品的电流和运行时间,不仅要减少每微安数,还要减少每个动作花费的每个微秒。

  为减小深度睡眠模式下消耗的电流,在能源敏感应用的MCU中采用8位(或16位)内核已经非常普遍。其理由是,8位内核(即使是在这类设计中经常采用的最新版本中)很小,门控相对较少,静电电流或漏电流较低。但是,现在的许多应用都需要比8位内核所能提供的更大的处理能力。在其它MCU应用领域,用户往往选择从8位升级到一个32位环境。在
低功耗的情况下,人们一直先入为主地认为32位内核在其掉电模式状态下使用的电流一定高得令人无法接受。随着全套低功耗设计技术的出现,今天的IC设计工程师已经可以用一个32位ARM内核提供各种低功耗模式,效果与8位产品一样甚至更好,而且还能实现快速唤醒。32位处理器更高的处理性能也使MCU可以更快完成任务,从而能够有更多时间处于这些低功耗模式下,这可以进一步降低平均功耗。

  低功耗外围设备功能

  为实现尽可能低的功耗,优化MCU睡眠状态功耗需要整体的设计方法。除了内核,MCU中的其它模块在待机设备、稳压器、偏置电流发生器,欠压检测比较仪、上电复位
电路中会继续消耗电流。几乎在任何情况下,一个简单的折衷法则是:掉电状态越久,就有越多外围设备的功能被完全关断,芯片准备好实现处理任务的唤醒时间就越长。由于应用之间差别很大,MCU设计工程师提供一种灵活的断电状态下的扩展套件就显得很重要了,这样产品设计人员就可以很好地为其项目进行待机功率和响应能力的折衷。

  设计一个在nanoamp区获得最深度睡眠状态电流水平的ARM内核只是低能源战略的一个步骤。能够获得32位内核的处理能力为管理能源的利用开辟了新途径。在任何时候,它是MCU供电图下面的区域,随着时间的推移,它表示从电池里取走的电荷(图2)。

 
图2:节能MCU内核通过完整的唤醒/工作/回到睡眠周期在多个不同区域节省能源。

  灰色区域表示相比8位内核,一个性能更强大的32位内核在更短周期内完成任务所节省的能量。

  就是这样,在具体配置中
电流消耗的数字越大,设计人员就必须更密切注意要最大限度地延长电池的使用寿命。在EFM32微控制器的开发工具包中,这种测量是很清楚的,这个工具包的基本功能部分是先进能源.(图3)。该设备不断测量给MCU内核供电的电压轨下的电流。用一个从模数转换器(ADC)通过电阻器采集电压,而开发工具包软件集成其读数来精确测量不同时间的功率。

 
图3:EnergyMICRO的先进能源.。

  相比性能更低的MCU,一个32位的内核将花更少的时间去主动完成一项相同的任务,同时,该内核在运行时消耗的功率也应尽可能低。专注于低功耗的IC设计工程师能够获得许多设计细节来实现其目标。这样的例子包括针对所有芯片同步逻辑优化时钟门控结构,以及组织总线系统和内存(SRAM和闪存)以在任何特定处理中尽可能减少位跳变。采用全套低功耗设计方法会在闪存中产生一个运行典型代码的ARMCortex-M3内核,而仅需用到低至180μA/MHz的能量。小心使用这些相同的技术可以确保其数字测量准确,获得低时钟速率,而不仅仅是一个最佳性能数字。

  一旦MCU被唤醒并执行应用代码,M3内核使用Thumb2指令集也有助于减少“活跃时间”。利用这样的紧凑型16位指令的双取指令功能,Thumb2ISA的效率非常高。

  在减少电流×微秒(current-times-MICROseconds)产品时,MCU设计工程师需要部署更多策略。其中一个是不仅减少内核在实际处理应用代码时所花的时间,而且还要缩短唤醒刺激之间的创建(ramp-up)时间(无论是定时生成或事件驱动),并且CPU正在准备做“真正的工作”。一种途径是最大限度地减少与内核时钟信号供应相关的启动时间。众所周知,当一个晶体振荡器从关闭状态中启动时,在作为一个系统时钟使用之前,它需要一些时间来稳定其输出。相反,一个RC振荡器作为MCU必须完成的所有任务的时基可能不够准确,但它会在开机后的几乎一瞬间产生有规则的输出。部分解决方案是缩短同时提供信号的时间。CPU在开机上电的同时就开始运行,由RC振荡器进行计时,而小型控制
电路一旦稳定下来就将时钟源传到一个晶体振荡器上。RC振荡器输出中任何频率精度不够都不重要,因为使用它的周期相对较短。

  简单任务无需MCU内核

  尽管设计工程师非常小心地为一个高性能处理内核提供
电源,并且在尽可能短的时间内实现了这个目标,但芯片设计师或系统设计师有必要问问给定任务是否需要这样的内核,即如果唤醒它只是执行简单任务的话,即使是最节能的内核也会浪费电池的电荷。我们再用环境传感器的应用作个例子,它可能需要定期测量,但只需在不频繁的时间间隔内将测量结果报告到中央数据记录器中。运行通信接口的软件堆栈一定会要求唤醒MCU内核,但这会更频繁地打开模数转换器,指挥A/D转换,并以低功耗内存积累结果。如果只要求外围设备设置在互连矩阵(图4)控制下自主运行的话,消耗的功率会更少。由于应用的差别很大,能够灵活地选择哪些功能模块来供电以及它们如何通信对充分利用这一概念非常重要。

 
图4:使用一个互连矩阵或“外围设备反射系统”可以执行简单的任务。

  在电源预算中加密

  众所周知,在现代C
MOS半导体工艺中,为硬连接块IC增加功能的硅区成本相对较低。这产生了与直觉略微不一致的结果,为了把功耗降到最低,最有效的选择往往是增加门控数。利用先进的时钟树设计、时钟门控和片上电源开关等技术,IC设计工程师可以随时轻松地完全关断不需要的功能。这种方法的一个突出功能就是加密。即使是看似平常的数据现在也通过例行的加密来保证安全,通常采用被称为AES的算法。这对一个32位MCU内核而言不是一项具有挑战性的任务,但它确实占用了大量的处理器周期,延长了总的微安×微秒(MICROamps-times-MICROseconds)。这些周期中的大多数花在了执行算法中的一些内部循环计算上,增加一个AES加速器硬件模块可使MCU停止AES算法,转向专用硬件,MCU继续进行其他处理,并以更少的周期得到加密(或解密)结果。

  迅速扩展的能源敏感应用类别(由少数高端类别如智能电能计量领导)重新定义了用电池驱动一个产品的意义。这些产品必须在单电池的驱动下提供服务,这一时间与电池本身的有效期一致,并与电池制造商规定的最大时间间隔(长达甚至超过20年)一致。只有一个高度集成的单芯片微控制器能为这样的设计提供一个现实的解决办法。

  IC设计工程师十分注重低功耗芯片设计的每个方面,这样的IC架构现在可以提供现代、功能强大的32位处理器内核给产品设计工程师,同时尽可能地降低了功率要求。
关键字:节能微控制器  电池寿命 编辑:冰封 引用地址:节能微控制器设计可延长电池寿命

上一篇:Intersil推出三通道宽输入电压步降控制器
下一篇:电池供电LED控制器电路介绍

推荐阅读最新更新时间:2023-10-18 15:44

澳洲研究人员开发新纳米技术 或使锂离子电池寿命翻倍
据外媒报道,澳大利亚昆士兰大学(The University of Queensland)的研究人员开发了一种新纳米技术,据称可使高压锂离子电池的寿命延长一倍以上,为实现更高密度和更低成本的储能解决方案铺平道路。 (图片来源:昆士兰大学) 该团队设计了一种只有原子厚度的正极材料,可以减少锂离子电池中的腐蚀行为。这种材料表现出更好的高压循环稳定性,经过1000次循环后,容量保持率接近80%。 该研究团队由昆士兰大学化学工程学院和澳大利亚生物工程与纳米技术研究所(AIBN) 的人员组成。研究负责人Lianzhou Wang教授表示,该团队已经展示了一种可充电锂离子电池,可在超过1000次循环中保持稳定。“研究人员在高压正
[汽车电子]
澳洲研究人员开发新纳米技术 或使锂离子<font color='red'>电池寿命</font>翻倍
如何延长微控制器设备的电池寿命
   电池供电设备,不管是电动牙刷、剃须刀、手机、个人数字助理(PDA)、MP3播放器,还是手无法够到的遥控设备,都成为人们日常生活的一部分。因此,电源管理对当今的嵌入式设计工程师来说是一件相当重要的的事。普遍存在的微控制器在许多设备的应用中为设计工程师提供了大量管理电源要求的方法。不同种类的MCU自身就拥有一系列节省电流消耗及许多节能特性。但是,在基于微控制器的设计中,对电源的管理不仅仅是选择一个正确的微控制器这么简单。   电源管理同样也需要最有效地使用MCU自身的降低电流消耗及节能特性的发展策略。在系统层面上,即使你所选择的MCU是独立的,同样能够使用许多策略来进一步延长您的应用设备的电池寿命。   应用实例:无
[电源管理]
如何延长<font color='red'>微控制器</font>设备的<font color='red'>电池寿命</font>
Diodes 1.9W D类音频放大器 提供高声压级水平并延长电池寿命
Diodes公司 (Diodes Incorporated) 针对以单芯锂离子电池供电的智能手机,推出1.9W D类音频放大器PAM8905,适合以低供电电压提供高声压级水平输出的音频系统。新产品通过内置的升压转换器产生输出级的电压轨,并同时在电池电压低的情况下,利用电池跟踪自动增益控制功能来调节增益及限制电池的电流,有效延长电池寿命。 PAM8905具有高效率的D类音频功率放大器和集成式升压转换器,可在仅1%的总谐波失真加噪声 (THD+N) 下提供高达1.9W的功率,以驱动8 扬声器。这款器件的升压电路配备全面的同步拓朴,比起直接连接电池的标准放大器,更能减少外部元件数量、提升效率及提高放大器的输出功率
[模拟电子]
Atmosic联手E Ink元太科技,延长纽扣电池寿命
物联网(IoT)超低功耗无线技术的创新者 Atmosic™ Technologies 与电子纸研发与制造厂商E Ink元太科技今日联合推出面向电子标牌(eBadge)应用的参考设计。 据市场研究机构Markets and Markets™预测,未来几年智能标牌(smart badge)市场将大幅增长。2019年电子标牌设备的市场规模为178亿美元,到2025年预计将达330亿美元,2020年至2025年间的年复合增长率高达9.6%。在预测期内,附带显示器的智能标牌细分市场年复合增长率预计将高达29.1%。智能标牌市场的高速增长可归因于其提供的便利性和交易安全性,以及对用户身份信息和账户的防篡改存储能力。 在Atmosic与
[电源管理]
丰田新一代双擎混动技术 电池寿命更长
盖世汽车从一汽丰田获悉,采用丰田先进的油电混合双擎动力的COROLLA HYBRID卡罗拉即将上市。卡罗拉双擎搭载了比第三代普锐斯更加先进的油电混合双擎动力技术,双擎采用双电机系统,发电机与电动机可同时进行发电或动力输出,二者高效协作,提供更充沛动力。其电机输出功率已占整个动力系统输出功率的53%,属于强混车型(盖世汽车小贴士:强混车型是指电机功率占整个动力系统输出功率的30%以上)。   一汽丰田方面表示,对于车辆搭载的混合动力蓄电池,无需外部充电和定期更换,提供8年或20万公里的无忧保障。据盖世汽车了解,卡罗拉双擎采用的高功率镍氢蓄电池,以最佳分布方式和小型化设计,减轻车身重量,保障续航里程和使用寿命的同
[嵌入式]
韩国科学家制造新电极 延长高容量锂空气电池寿命/增长汽车续航
据外媒报道,韩国大邱庆北科学技术院(DGIST)的研究人员正在改进锂空气电池的性能,让 电动汽车 更加容易普及。该电池会在需要充电之前,利用氧气延长运行时间。在最新发表的论文中,研究人员描述了如何在掺杂了硫的石墨烯上利用镍钴硫化物纳米薄片制造电极,从而生产出具有高放电容量的长寿命电池。 (图片来源:大邱庆北科学技术院) 韩国大邱庆北科学技术院的化学家Sangaraju Shanmugam表示:“采用锂离子电池的 电动汽车 的续航里程大约是300公里,意味着车辆很难往返于首尔和釜山之间,因此我们研究锂空气电池,因为此种电池能够存储更多能量,从而提供更长的续航里程。” 但是,在锂空气电池实现商业化之前,还面临很多挑战。例
[汽车电子]
韩国科学家制造新电极 延长高容量锂空气<font color='red'>电池寿命</font>/增长汽车续航
基于AVR单片机的计算机智能节能插座设计
计算机外部设备(如打印机、扫描仪、音响等)的待机能耗不但增加了消费者的日常电费开支,也使电力资源浪费极大。该设计的计算机智能节能插座利用主机的开机和关机来带动其他设备的开或关,使其接口设备待机能耗为零,能够减少计算机及其外设所产生的辐射,以此达到节能和环保功效;同时还具备有分段定时开关的功能。该智能插座也可以通过功能转换作为普通插座使用,不影响其他设备的使用。 1 智能插座的设计 1.1 智能插座的硬件结构 计算机智能节能插座的硬件结构图如图1所示。该控制器以AVRmega 48为控制核心,外围电路主要由电流采样电路、模/数转换参考电压电路、状态显示电路、键盘输入电路和实时时钟构成。电流采样电路用于检测计算机的运行状态和过流保
[单片机]
基于AVR<font color='red'>单片机</font>的计算机智能<font color='red'>节能</font>插座设计
最大限度降低电池供电的MCU系统耗电量
  今日的便携式产品设计对所用的电池会有些相互冲突的要求,例如更丰富的产品功能会增加耗电,终端用户希望电池使用时间更长,但不断缩小的产品体积和成本限制却使电池容量无法增加,因此节省电力就成为最重要的考虑。传统设计为了将耗电减到最低,通常都尽可能减少电流消耗,但其实电池的蓄电量是电压、电流和时间的乘积,要有效提升整个系统的电源效率,就必须同时考虑这三项变量。微控制器系统若以电池做为电源,这些电池又能由使用者更换,则可采用专为这些变量而设计的微控制器,因为它们可通过芯片内置电压转换等功能和传统低耗电操作模式来解决上述问题。   电池特性   多数低端和中端便携式产品都会使用可替换的电池或充电电池,这些电池还可由使用
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved