反激式开关电源高频变压器的设计过程

最新更新时间:2011-09-17来源: 互联网关键字:反激式  开关电源  高频变压器 手机看文章 扫描二维码
随时随地手机看文章

0.引言

随着电子信息技术的不断发展[1],各类电子设备在客观上要求小型化、轻量化和提高可靠性。为了适应这种要求需要开展DC-DC 变换器的高频化研究。在各种变换器的拓扑结构中,单端反激电路具有很多优点,其中最主要的优点是电路简单,成本低,适合多路输出。由于电路简单,在小功率情况下体积可以做得最小, 这种变换器拓扑结构在小功率的变换器设计中得到广泛采用。

单端反激DC-DC 变换器中的变压器工作时相当于一个带有两个(或多个)绕组的电感,这一点不同于典型的变压器[2]。初级线圈用于磁化磁芯,并且在磁芯损耗方面,磁芯损耗(PL)主要由三部分组成:磁滞损耗(Ph),涡流损耗(Pe)和剩余损耗(Pr)。其他讲了一些关于绕组、磁芯等的基本概念并没有提出新意的观点。在每个周期开关导通时间内存储能量,次级线圈用于磁芯的退磁, 并将在开关管导通时间内变压器存储的能量传递给负载。所以在设计高频反激变压器时必须考虑设计的变压器能传递所需要的能量。另外,为了设计高效率的变换器还需要考虑变压器的功率损耗。

2.单端反激变压器功率损耗模型的建立

以高频单端反激变压器为例推导计算变压器总功率损耗的数学模型: 通过功率损耗分离的方法可以将变压器的功率
损耗写成磁芯功率损耗与绕组功率损耗的总和[2]。

2.1 磁芯功率损耗

变压器的功率损耗可以分为磁芯功率损耗和绕组功率损耗, 而磁芯功率损耗主要是由涡流功率损耗和磁滞功率损耗构成的。磁损的计算公式如下:

2.2 绕组损耗

电力电子领域, 为了分析和设计在非正弦条件下的传统高频变压器的绕组,陆续研究出一些实用的分析方法,一般是通过分析得到绕组的交流电阻, 然后由交流电阻计算绕组功率损耗。绕组的功率损耗也可以用下面的公式表达:

 

其中,Icm为通过高频变压器绕组的电流有效值; Kr 为趋肤系数;ρ 为铜的电阻率;MLT 为平均匝长度(单位m/匝);N
为线圈的匝数;Sa为绕线的横截面积。

3.优化设计思路

传统的变换器设计沿用了工频变压器的设计方法, 特点是工作磁感应强度变化△B、最大导通比Dmax 通常由经验确定,然后通过反复试验加以调整,最后完成设计。这样设计的缺点是,往往要进行反复的重新设计来积累经验,对变换器的整体设计造成影响,需要多次重新调整变换器的整体设计,而且往往选择的参数并没有达到系统最优。模拟退火算法是一种基于随机搜索的最优算法, 该算法非常适用于工程实际求解最优解。本文提出新的设计方法是在最初的设计中引入功耗计算,选择最小功耗的方案,确定最小功耗前提下的△B 和Dmax 的最优选择, 进一步设计变换器整体设计中的其他参数。本文探讨了在效率最高、损耗最低、温升最低的约束条件下Bm、J 的最优值,建立数学模型,并通过模拟退火算法实现优化设计.

根据本文在前面的到的结论: 当变压器初级铜损等于次级铜损、磁芯损耗等于绕组损耗时,变压器总损耗最小。以反激变换器为入手点,建立方程:

 


其中:G 为磁芯重量;Kr 趋肤系数;K1为Ap 余量;K2为铜损余量;磁芯选最为常用的PC40 磁芯,则Pcv 有:



 

由上式即可求出变压器总损耗最小时和D 的最佳值。

 

本文利用模拟退火算法研制300kHz 的AC-DC 高频变压器[4]。其据以指标为:电结构为单端反激,工作方式为连续电流工作模式,输入电压为交流220V,输出电压为5V,输出电流为0.05~2A,工作频率为300kHz,效率为90%。其中的取值范围0.0001-0.07T,Dmax 的范围为:0.2-0.5。利用模拟退火算法,退火策略选用指数型退温:tk=akt0; 其中a 为一个小于零的常数。a 越小,退火速度越快。t0为初始温度,这里选1000。下图1 所示的为在整个迭代过程中,Dmax 整体最优解的变化过程。

4.结语

通过理论推导建立了高频反激变压器总功率损耗的数学模型, 提出利用数据拟合技术和模拟退火算法求解高频反激变压器的总功率损耗最小时△B 和Dmax 的最优取值的优化设计思想。提出一种优化设计高频DC-DC 变换器的方法,以单端反激变压器为例, 通过遗传算法得到△B、Dmax 和Lp 的最优取值的优化设计。试验验证采用这种优化设计方法设计的反激变换器具有很高的效率.



 

关键字:反激式  开关电源  高频变压器 编辑:冰封 引用地址:反激式开关电源高频变压器的设计过程

上一篇:单级功率因数校正(PFC)变压器的设计
下一篇:高压变频器中功率驱动PWM信号的远距离传送实现

推荐阅读最新更新时间:2023-10-18 15:45

经典指南:你真的了解开关电源吗?
 开关电源    我想DIY开关电源,要具备哪些理论知识、实践技能和工程素质啊?    如何从给定的设计规格设计出开关电源?具体步骤是什么?    开关电源中的电感、变压器怎么自己制作?控制芯片如何选型?    如何选择磁芯外形、变频器类型、工作频率、计算各种参数呢?    如何进行优化和折中?      电源是一切电子设备的心脏,没有电源,电子设备就不可能工作。虽然市面上有很多介绍开关电源的书籍,但仍然缺少快速入门及经验总结类的资料,所以,尽管资料丰富,但还是有很多人不知道怎样利用。当然这篇文档只是入门介绍,深入研究还要看其他专著。   从电网得到的交流电或由电池取得的直流电是随
[电源管理]
频率控制型开关电源电路设计
开关是最常见的电子元件,功能就是电路的接通和断开。接通则电流可以通过,反之电流无法通过。在各种电子设备、家用电器中都可以见到开关。   电源电路,开关元件采用晶闸管VS。电路中,L1的磁芯的磁滞回线为矩形,电容C和晶闸管VS构成摩根(Morgan)电路。稳压管VD通过基准电压,VT1和VT2构成误差放大器,VT3构成恒流源电路,由接在发射极的电阻R调整其电流,C1作为VT3的负载,以恒定电路对其充电。VT4为单结晶体管,当发射极电压即C1两端的充电压达到其峰值电压时,VT4导通,形成的触发脉冲通过脉冲变压器加到VS的门极,使其导通,产生励磁电流使L1磁芯的磁通逐渐增大,与此同时电容C以图示极性充电。   若磁芯饱和,电容C
[电源管理]
频率控制型<font color='red'>开关电源</font>电路设计
开关电源电感的基本要点的选取
 开关电源电感器是开关电源设备的重要元器件,它是利用电磁感应的原理进行工作的。它的作用是阻交流通直流,阻高频通低频(滤波),也就是说高频信号通过电感线圈时会遇到很大的阻力,很难通过,而对低频信号通过它时所呈现的阻力则比较小,即低频信号可以较容易的通过它。电感线圈对直流电的电阻几乎为零。   图1所示为一个降压拓扑结构开关电源的架构,该构架广泛应用于输出电压小于输入电压的开关电源系统。在典型的降压拓扑结构电路中,当开关(Q1)闭合时,电流开始通过这个开关流向输出端,并以某一速率稳步增大,增加速率取决于电路电感。根据楞次定律,di=E*dt/L,流过电感器的电流所发生的变化量等于电压乘以时间变化量,再除以这个电感值。由于流过负载电阻R
[电源管理]
<font color='red'>开关电源</font>电感的基本要点的选取
智能高频开关电源系统的性能特点
  为了保证智能高频开关 电源 系统的质量,我们组织了多名技术人员对多个生产厂家进行了考察,了解厂家的生产工艺、规模和实验测试手段等情况,经过“货比三家”后,技术改造决定使用GZDW—200/220型操作电源。它是专为 电力 系统研制开发的新型“四遥”高频 开关电源 ,采取高频软开关技术,模块化设计,输出标称电压为220V,配有标准RS?232接口,易于与 自动化 系统对接,适用于各类 变电站 、发电厂和水电站使用。此设备有下列性能特点:   1)模块化设计,N+1热备,可平滑扩容。   2)监控功能完善,高 智能化 ,采取大屏幕液晶汉字显示,声光告警。   3)监控系统配有标准RS?232接口,方便接入自动化系统,实施“四遥”及
[电源管理]
开关电源变压器的漏感
任何变压器都存在漏感,但开关变压器的漏感对开关电源性能指标的影响特别重要。由于开关变压器漏感的存在,当控制开关断开的瞬间会产生反电动势,容易把开关器件过压击穿;漏感还可以与电路中的分布电容以及变压器线圈的分布电容组成振荡回路,使电路产生振荡并向外辐射电磁能量,造成电磁干扰。因此,分析漏感产生的原理和减少漏感的产生也是开关变压器设计的重要内容之一。 开关变压器线圈之间存在漏感,是因为线圈之间存在漏磁通而产生的;因此,计算出线圈之间的漏磁通量就可以计算出漏感的数值。要计算变压器线圈之间存在的漏磁通,首先是要知道两个线圈之间的磁场分布。我们知道螺旋线圈中的磁场分布与两块极板中的电场分布有些相似之处,就是螺旋线圈中磁场强度分布是基本均
[电源管理]
<font color='red'>开关电源</font>变压器的漏感
开关电源原理与设计(连载51)
      2-1-1-2.变压器铁芯的初始磁化曲线       下面我们继续对变压器铁芯的磁化过程进行详细分析。图2-3是多个直流脉冲电压连续加到变压器初级线圈a、b两端时,输入脉冲电压与变压器铁芯中磁通密度B或磁通对应变化的曲线图。图2-3-a)为输入电压各个直流脉冲之间的相位图,图2-3-b)为变压器铁芯中磁通密度B或磁通Φ对应各个输入直流脉冲电压变化的曲线图。图2-3-c)为变压器铁芯中磁场强度H对应磁通密度B或磁通Φ和各个直流脉冲电压之间变化的曲线图。       从图2-3-a)和图2-3-b)可以看出,每输入一个直流脉冲电压,变压器铁芯中的磁通密度B或磁通Φ就要线性增长和下降一次(对于纯电阻负载,磁通密度下降
[电源管理]
<font color='red'>开关电源</font>原理与设计(连载51)
基于开关电源的系统电磁兼容设计探讨
随着 电子 技术的飞速发展,电子设备同时也朝着功能集成化,体积小型化方向发展,这给我们带来诸多的便利,但是各种电子设备之间的电磁耦合也成了工程师们面对的主要问题。电子环境污染的危害性不亚于传统的环境污染。而电磁污染作为环境污染的一部分也被提上了议程。电子设备在正常工作时候,会承受各种电磁干扰,包括自身内部器件的相互干扰,以及周围其他电子设备的干扰,同时会对周围其他的电子设备产生电磁干扰。电子设备在不同应用环境中(家用、工控、电力)要求差异性非常大,这方面可以参考通用标准IEC/EN61000-6系列或者对应产品的行业要求。   这种电磁干扰在传输途径方面主要是包括两个方面:一是沿着线束进行传输,这方面主要包括沿着电源端口进行传输以
[电源管理]
开关电源原理与设计(连载三)串联式开关电源储能滤波电感的计算
1-2-3.串联式开关电源储能滤波电感的计算 从上面分析可知,串联式开关电源输出电压Uo与控制开关的占空比D有关,还与储能电感L的大小有关,因为储能电感L决定电流的上升率(di/dt),即输出电流的大小。因此,正确选择储能电感的参数相当重要。 串联式开关电源最好工作于临界连续电流状态,或连续电流状态。串联式开关电源工作于临界连续电流状态时,滤波输出电压Uo正好是滤波输入电压uo的平均值Ua,此时,开关电源输出电压的调整率为最好,且输出电压Uo的纹波也不大。因此,我们可以从临界连续电流状态着手进行分析。我们先看(1-6)式: iLm =(Ui-Uo)/L *Ton + i(0) —— K关断前瞬间
[电源管理]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved