光纤激光切割技术仅在近3到5年内出现。虽然很多公司刚开始了解此技术,但也开始意识到光纤激光切割和较普通的二氧化碳激光切割之间的差异。随着切割技术的不断改进,而光纤激光切割成为目前本行业最前进的技术之一。
热能切割方法主要包括火焰、等离子和激光切割技术,其中激光切割可实现最好的切割质量,尤其是对于直径和厚度比小于1:1的精细特征和孔切割。这样一来,激光切割技术成为本行业中最适合要求严格精细切割的方法。
而在激光切割的范畴中,光纤激光切割获得很多的关注,因为它既提供了二氧化碳激光切割可实现的速度和切割质量,而且维护和操作成本显著降低。所以这使得光纤激光切割前景良好,许多专家相信它会很快代替其他的激光切割系统。
光纤切割的主要优势
二氧化碳激光切割技术中,二氧化碳气体是产生激光光束的介质。然而,光纤激光是通过二极管和光纤电缆进行传输工作的。光纤激光系统通过多个二极管泵浦产生激光束,然后通过挠性光纤电缆传输至激光切割头,而非通过反射镜传输光束。这样有很多优势,首先是切割床尺寸。气体激光技术中反射镜必须设定在一定的距离内,和其不同,光纤激光技术无范围限制。而且甚至可以将光纤激光安装在等离子切割床的等离子切割头旁边,二氧化碳激光切割技术无此可选件。同样,在和同等功率的气体切割系统比较时,由于光纤弯曲的能力使得该系统显得更加紧凑。
光纤切割技术最重要且有意义的优势应该就是其能效性。凭借光纤激光完整的固态数字模块、单一设计,光纤激光切割系统拥有高于二氧化碳激光切割的电光转换效率。对于二氧化碳切割系统的各个电源单元来说,实际一般利用率约为8%至10%。而对于光纤激光切割系统来说,用户可以期望更高的电源效率,大约在25%至30%间。换句话说,光纤切割系统整体消耗的能源比二氧化碳切割系统少约3至5倍,使得能效提高至大于86%。
光纤激光具有短波长的特性,从而提高切割材料对光束的吸收性,而且使得能够切割如黄铜和铜以及非导电性材料。更加集中的光束产生较小的焦点和较深的焦深,这样光纤激光可以快速切割较薄材料以及更加有效地切割中等厚度材料。切割厚至6mm的材料时,1.5kW光纤激光切割系统的切割速度相当于3kW二氧化碳激光切割系统的切割速度。因为光纤切割的运行成本低于普通二氧化碳切割系统的成本,所以这可以理解为输出量提高而商业成本降低。
同样存在维护的问题。二氧化碳气体激光系统需要定期维护;反射镜需要维护和校准,谐振腔需要定期维护。另一方面,光纤激光切割解决方案几乎不需要任何维护。二氧化碳激光切割系统需要二氧化碳作为激光气体,由于二氧化碳气体的纯度问题,谐振腔内会污染,需要定期清理。对于一个数千瓦级二氧化碳系统来说,此项每年至少花费2万美元。另外,许多二氧化碳切割需要高速轴流涡轮机输送激光气体,而涡轮机的需要维护和翻修。最后,和二氧化碳切割系统相比,光纤切割解决方案更加紧凑,并且对地球的影响小,所以需要更少冷却,而且能源消耗明显降低。
较少的维护和较高能效相结合使得光纤激光切割和二氧化碳激光切割系统相比,排放较少的二氧化碳,而且更加环保。
采用光纤激光切割的注意事项
采用光纤激光切割时需考虑的几点重要事项。首先是护眼。光纤激光系统发出的光波长对眼睛有害,所以必须采取护眼措施。由于该技术出现仅不到5年时间,所以强烈建议进行有关适当的系统操作和安全的综合培训。很多操作工都没有使用光纤激光切割的切割经验,所以应通过对操作光纤切割系统进行好的初始培训来弥补缺乏的经验。
另一项需要注意的是要切割的材料。虽然光纤激光切割擅长切割大部分材料,但是其不能用于切割丙烯酸类或聚碳酸酯类材料,而且仅能切割有限应用领域中的木质或纤维材料。同时,对于确定何时使用光纤激光切割来说,要切割材料的厚度是一项很重要的因素。较厚的材料需要更大的功率切割,而这些情况下,激光切割可能并非是很好的选择。此时可以正好利用将光纤激光安装在等离子切割头旁边的功能。在快速、便捷切换至等离子切割前,操作工可以使用光纤激光切割要求公差小的较薄材料。甚至可以使用2种不同的切割方法切割同一零件。例如,操作工可以选择使用等离子切割零件的外部,然后使用光纤激光切割内部形状。
最后,最好将评定综合激光切割设置需要的零部件以及如何购入各零件也考虑进去。装备有激光电源、气体操作台、激光切割头以及高度控制器、数控(CNC)和切割控制程序的系统将实现一体化解决方案宝贵的效益。凭借综合解决方案,购买和集成光纤激光系统的过程变得不那么复杂。考虑筛选出已事先确定切割参数,优化专用于切割的系统,从而在接通电源后立即开始切割。
结束语
总之,同普通二氧化碳激光切割系统相比,光纤激光切割系统拥有众多独特优势,如高能效、维护成本低、更加便捷的解决方案——但是其并不是适合所有的切割形式。在选取综合的激光切割解决方案前,考虑安全事项以及培训事宜、普通切割材料的类型和厚度,以及要求的切割质量很重要。
上一篇:配电网络的自动化技术现状和发展方向
下一篇:创新运动算法实现手势识别设备多功能化
推荐阅读最新更新时间:2023-10-18 15:49
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- 英飞凌推出符合ASIL-D标准的新型汽车制动系统和电动助力转向系统三相栅极驱动器 IC
- 南芯科技推出80V升降压转换器,持续深耕工业储能市场
- 法雷奥与罗姆联合开发新一代功率电子领域
- 贸泽电子开售能为电动汽车牵引逆变器提供可扩展性能的 英飞凌HybridPACK Drive G2模块
- Vishay推出采用eSMP®系列SMF(DO-219AB)封装的全新1 A和2 A Gen 7 1200 V FRED Pt®超快恢复整流器
- Littelfuse推出高性能超级结X4-Class 200V功率MOSFET
- 恩智浦发布首个超宽带无线电池管理系统解决方案
- 非常见问题解答第223期:如何在没有软启动方程的情况下测量和确定软启动时序?
- Vicor高性能电源模块助力低空航空电子设备和 EVTOL的发展
- PC产业驶入创新超车道,英特尔蓉城撬动AI新引擎
- 与产业聚力共赢,英特尔举行新质生产力技术生态大会
- “新”享5G-A万兆网络前沿体验 高通携手产业伙伴亮相第二届链博会
- 英飞凌推出符合ASIL-D标准的新型汽车制动系统和电动助力转向系统三相栅极驱动器 IC
- 南芯科技推出80V升降压转换器,持续深耕工业储能市场
- 法雷奥与罗姆联合开发新一代功率电子领域
- 贸泽电子开售能为电动汽车牵引逆变器提供可扩展性能的 英飞凌HybridPACK Drive G2模块
- 德州仪器新型 MCU 可实现边缘 AI 和先进的实时控制, 提高系统效率、安全性和可持续性
- 瑞萨推出高性能四核应用处理器, 增强工业以太网与多轴电机控制解决方案阵容
- 研华全新模块化电脑SOM-6833助力5G路测设备升级