电容式触摸屏系统设计中的问题解决方法

最新更新时间:2011-09-27来源: chinaaet关键字:多点触摸  电容触摸屏  静电放电 手机看文章 扫描二维码
随时随地手机看文章
  随着消费移动通信设备越来越多地采用数字方式和集成更多的功能,对于设备的设计来说,开发直观的创新型用户接口(UI)方案变得更为重要。作为用户接口设计的一部分,投射式电容触摸屏有助于应对这一挑战。

  要设计一款成功的投射式电容触摸屏系统,需要仔细考虑设备的机械设计、基底选择和用户接口,另外,在设计过程的所有阶段都不能忘记在成本和技术之间进行折衷。

  与电阻式触摸屏技术不同,投射式电容触摸屏更易于处理手指的动作,特别是多点触摸的用户输入。电阻技术需要依靠手指压力使触摸屏的多个机械层产生电气接触。

  这种操作方法会影响手指滑动的流畅性和手势操作的灵巧性。另外,电阻式触摸屏的多层机械结构易于因重复使用而较早产生磨损。

  用投射式触摸屏实现的几种常见的多点触摸手势包括手指的张合、缩放、双指的滑动和旋转。它们可以快速方便地处理数据、内容和用户参数。便携游戏和文本/电子邮件应用也可以利用多点触摸技术。在一个多指触摸过程中,多触点APA(全点可寻址)模式可以精确地测定每个手指所按压的坐标位置。

  不用先按Shift更换字符集然后再输入实际字符,多点触摸可以同时点击Shift实际字符。多点触摸方式在GPS导航中也有广泛的应用。不用输入起始地和目的地,APA可在屏幕上实现目标位置的选择,让人们更快地到达目的地。图1演示了多点触摸操作可能出现的一些情况。

  要评价一个设备的机械设计,必须解决几个关键问题:

  1. 防护层(触摸表面)是平面还是曲面?

  通常建议把电容式触摸屏安装在平板式触摸表面上。曲面会增加复杂性。要实现鲁棒的电容式触摸设计,透明的触摸传感器必须整齐地夹在防护层的下面。因压合不均匀而产生的任何气泡都会降低触摸性能并影响产品的美观。

  曲面防护层只能以PET(聚脂)作为触摸传感器的基底。塑料传感器可通过弯曲来适应防护层的外形。如果必须使用曲面的防护层,从反射的角度看,建议曲率不超过45度。曲率增大会增加压合工艺的难度,并可能损坏ITO(氧化铟锡)图案,进而可能会影响成品率。

  使用压敏粘合剂(PSA)来实现压合较为便宜,但它不能用于曲面防护层。要保证更好的压合完整性,可能须使用更为昂贵的UV固化粘合剂。UV粘合剂价格昂贵,但使用方便、粘合层薄,并具有非常高的光学品质(透明度大于95%)。

  2.防护层非工作区(不透明区)的边沿宽度为多少?

  对尺寸小于4英寸(10厘米)的触摸屏,触摸屏的边沿宽度,在触摸传感器尾线一侧应不窄于10mm,与尾线侧毗邻的两侧应不窄于3mm。这个边沿空间用于隐藏把透明的ITO图案链接到控制电路的非透明银质箔线并隐藏控制电路本身。对于使用玻璃基底的触摸屏,边沿的宽度或许可以做得更窄,但仍建议使用上述指导原则。图2 描述了这些指导原则。

  3.保护层使用什么材料?

  在触摸屏工作区域内,保护层和任何装饰品都不能使用导电性材料。

  因为使用导电性材料会屏蔽电容传感器的电场,并极大地降低传感性能。保护层的厚度应为1mm或更薄。

  4.保护层底面与液晶显示模块(LCM)之间的距离是多少?

  由于便携通信设备外形纤巧,液晶模块(LCM)与保护层之间的间距需要重点考虑。必须有足够大的空间来安装薄的触摸屏传感器,另外还需要有足够大的气隙来避免触摸传感器受到来自LCM的电磁干扰。建议在触摸传感器基底和LCM之间至少留0.5mm的间隙。

  5.如何处理静电放电(ESD)?

  为防止在触摸表面上发生静电放电事件,必须设置一条贯穿整个设备的低阻抗接地路经。应使用放置在防护层非工作边界区中的接地环来保护触摸传感器。

  接地环可以是简单的金属箔。必须保证在接地环和设备的系统地之间存在可靠连接。

  在完成了机械评估之后,必须为触摸屏选择一个合适的基底。图3 显示了投射式电容触摸屏的一个典型ITO图案。

关键字:多点触摸  电容触摸屏  静电放电 编辑:探路者 引用地址:电容式触摸屏系统设计中的问题解决方法

上一篇:电容式触摸感应器
下一篇:常用的电容式触摸控制解决方案分享

推荐阅读最新更新时间:2023-10-18 15:49

基于TI 电容触摸屏控制器的应用方案
引言 电阻式触摸屏有过其鼎盛时期,但不可否认它们已日薄西山。很明显,它更加适合于低成本的设计。使用这些设计的用户必须戴手套,例如:在医疗、工业和军事环境下。然而,电容式触摸屏却获得了普遍的使用,今天市场上销售的主流智能手机和平板电脑都使用了电容式触摸屏。 电阻式与电容式触摸屏比较 电阻式和电容式触摸屏都使用氧化铟锡(ITO)传感器,但使用方式却截然不同。电阻式触摸屏利用人体触摸的机械作用力来连接ITO的两个柔性层(图1a),而电容式触摸屏控制利用的是:基本上而言,人本身就是移动的电容器。触摸ITO时,会改变系统可感知的电容水平(图1b)。 图1 触摸屏设计比较 电容式触摸屏受到消费者的青睐,主要有两个原因:
[嵌入式]
ESD产学联盟成立携手提升IC产业竞争力
        随着半导体制程微缩、电子装置轻薄短小趋势,为提升产品可靠度、降低零组件成本,积体电路与电子系统静电放电防护技术(ESD)需求应运而生,交通大学光电学院院长柯明道博士获核科技部推动的「补助产学技术联盟合作计画」(简称产学小联盟),成立「积体电路与电子系统之静电放电防护技术产学联盟」(ESD产学联盟),与业界携手,透过论文发表、培育领域人才与举行技术论坛、教育训练等措施,将静电放电防护技术与知识推广到业界。柯明道表示,ESD技术正好与业界需求相符,目前不少硕、博士生在毕业前就已获许多业界公司「预定」或给予实习机会,希望透过此联盟落实学界研发能量与业界互动,提升整体产业竞争力。   交通大学光电学院院长柯
[手机便携]
MAX2140内部ESD二极管的保护电路设计
在对MAX2140 SDARS接收器进行热插拔操作(接通电源或断开电源)时,可能使其内部静电放电(ESD)保护二极管失效,热插拔不是该器件的标准操作。但这种情况会发生在很多应用中,尤其是在汽车工业中,经常会进行热插拔的操作。本文分析了热插拔操作可能造成ESD二极管失效的原因,并帮助设计合理的电路来预防二极管的失效。 概述 在进行装配、测试和故障处理时,有时需要对MAX2140 SDARS接收器进行非标准操作。其中一个例子就是热插拔操作,即在不关闭电源的情况下,直接将该器件与电路进行连接或断开连接。热插拔操作在汽车电子领域尤其常见,因为部件的模块化设计,模块之间的距离以及多个系统同时工作的需求,常常需要重新连接模块。
[模拟电子]
TDK防护器件实现音频设备ESD和EMI双重保护
产品亮点: 出色的 ESD 保护能力,符合 IEC61000-4-2 四级标准 可有效抑制无线通信所产生的TDMA噪声 提高了无线通信接收器灵敏度 最大工作电压为直流28 V,实现大功率音频输出 TDK株式会社 (TSE:6762) 凭借新型AVRF101U6R8KT242产品扩大了其用于音频设备的贴片压敏电阻产品阵容,并实现了ESD和EMI双重保护。该产品适用于工作频段为2.4 GHz的无限通信音频设备。由于其优化电容达到6.8 pF,该多层元件在此频段可快速衰减,且能够有效抑制所产生的TDMA噪声,从而提高接收器的灵敏度。同时,该产品具备出色的ESD保护能力,符合IEC61000-4-2四级标准,最大工作电压为直
[电源管理]
TDK防护器件实现音频设备<font color='red'>ESD</font>和EMI双重保护
恩智浦推出用于NFC天线的ESD保护二极管
恩智浦半导体(NXP Semiconductors N.V.)(纳斯达克代码: NXPI)是全球ESD(静电放电)保护和NFC解决方案领域的领先企业,近日宣布推出一系列新的ESD保护器件,专用于保护移动设备NFC(近距离无线通讯)天线免受瞬时电压影响。 PESD18VF1BL和PESD24VF1BL为18 V和24 V双向二极管,电容低至0.35 pF(典型值)。 新型ESD保护二极管采用小型无铅DFN1006-2封装(1.0 x 0.6 x 0.48毫米,0402英寸),是如今小巧纤薄的智能手机的理想之选。 NFC天线通常与电池盖融为一体,或集成在电池中,并通过手机上的小触点连接NFC IC。 这些触点是ESD冲击
[网络通信]
恩智浦推出用于NFC天线的<font color='red'>ESD</font>保护二极管
TE电路保护部推出8款单/多通道硅静电放电保护器件
TE Connectivity旗下的一个业务部门TE电路保护部日前发布一个系列8款全新的单/多通道硅静电放电(SESD)保护器件,可提供市场上最低的电容(双向:典型值为0.10pF,单向:典型值为0.20pF)、最高的ESD保护(20kV空气放电和接触放电)和最小尺寸封装(多通道:最小的直通外形尺寸、厚度为0.31mm)。 这些SESD器件的超低电容带来了业界最低的插入功耗,这在超高速应用中对保持信号完整性至关重要。该器件可帮助免受由静电放电、浪涌和电缆放电所引起的损坏。多通道器件也具有一个特殊设计的直通封装,可允许印刷电路板(PCB)布线的匹配阻抗,这对于保持高速信号的完整性是必不可少的。具有超低电容、小体积和高静电放电额
[模拟电子]
高浪涌千兆网的单颗ESD保护方案
上海雷卯电子推出了LC2508P8瞬态抑制二极管阵列ESD,该产品专门用于保护电信和工业设备千兆网免遭静电放电(ESD)和雷击导致的浪涌现象的破坏。 每个通道或输入/输出引脚均可安全吸收高达40A的反复性ESD冲击,且性能不会下降。 由于氧化层极薄且晶体管结点较浅,现代芯片组极易受到损坏。 由于具有极低的动态电阻和箝位电压,LC2508P8系列装置能够保护当今的小型芯片组免受瞬态现象的损害。 凭借每个输入/输出端与地面之间极低的电容,该装置可提供强大的保护、保持信号的完整性,并防止数据在传输时丢失。 LC2508P8产品可提供最高40A的雷击浪涌保护,最大箝位电压为25V,比类似的工业解决方案低10%。     此外,由于具有较
[电源管理]
高浪涌千兆网的单颗<font color='red'>ESD</font>保护方案
安森美在ESD保护技术研讨会上分享先进技术
高性能、高能效硅解决方案供应商安森美半导体(ON Semiconductor)昨日在台北举行的第七届静电放电保护技术研讨会上,针对如何防止静电放电(ESD)所带来的损失,从元件、制造和系统三个层级的技术面加以探讨,为业界提供实质建议。要有效降低ESD所带来的损害,除了可选择在制程中直接控制ESD之外,也可以在电子元件中加强抵抗ESD的装置。安森美半导体长期投入于研发ESD保护技术,通过先进的ESD保护技术和完整的产品系列,使电子元件具备优异的电路保护性能。 ESD是整个电子产业共同面临的问题,影响相当广泛,包括生产、封装、测试、以及搬运等每个环节都会受到ESD的影响,静电往往会累积在人体、仪器和存放设备当中,甚至
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved