单电源运算放大器的偏置与去耦电路设计

最新更新时间:2011-10-24来源: 互联网关键字:单电源  运算放大器  去耦电路 手机看文章 扫描二维码
随时随地手机看文章

目前在许多手持设备、汽车以及计算机等设备只用单电源供电,但是单电源容易出现不稳定问题,因此需要在电路外围增加辅助器件以提高稳定性。在电路图1中展示了单电源供电运算放大器的偏置方法,用电阻RA与电阻RB构成分压电路,并把正输入端的电压设置为Vs/2。输入信号VIN是通过电容耦合到正输入端。在该电路中有一些严重的局限性。
首先,电路的电源抑制几乎没有,电源电压的任何变化都将直接通过两个分压电阻改变偏置电压Vs/2,但电源抑制的能力是电路非常重要的特性。例如此电路的电源电压1伏的变化,能引起偏置电路电压的输出Vs/2变化0.5伏。该电路的电源抑制仅仅只有6dB,通过选用SGM8541运算放大器可以增强电源抑制能力。

图1:单电源供电运算放大器的偏置方法。
其次,运算放大器驱动大电流负载时电源经常不稳定,除非电源有很好的调节能力,或有很好的旁路,否则大的电压波动将回馈到电源线路上。运算放大器的正输入端的参考点将直接偏离Vs/2,这些信号将直接流入放大器的正输入端。

表1:适用于图2的典型器件值。
在应用中要特别注意布局,多个电源旁路电容、星形接地、单独的印制电源层可以提供比较稳定的电路。
偏置电路的去耦问题
解答这个问题需要改变一下电路。图2从偏置电路的中间节点接电容C2,用来旁路AC信号,这样可以提高AC的电源抑制,电阻RIN为Vs/2的基准电压提供DC的返回通路,并且为AC输入提供了交流输入阻抗。

图2:接电容C2来旁路AC信号,提高AC的电源抑制。

这个偏置电路的-3dB带宽是通过电阻RA、RB与电容C2构成的并且等于

此偏置电路当频率在30Hz以内时,没有电源抑制的能力,因此任何在电源线上低于30Hz的信号,能够轻易地加到放大器的输入端。一个通常解决这个问题的方法是增加电容值C2,它的值需要足够的大,以便能有效地旁路掉偏置电路通频带以内的全部噪声。然而在这里比较合理的方法是,设置C2与偏置电路连接点的带宽是十分之一的信号输入带宽,参见图2。

表2:电路图3和4的一些齐纳二极管与Rz电阻值的关系
在有些运算放大器中输入偏置电流比较大是需要考虑的,由于放大器偏置电流的影响,偏置分压电路的分压点将偏离Vs/2,影响了放大器的静态工作点。为了使放大器的静态工作点尽量靠近Vs/2,需要增加平衡电阻,见电路图2。在这个电路中运算放大器选用的是SGM8541,该放大器的输入偏置电流在常温下只有1-2个皮安,几乎为零,因此可以不考虑输入偏置电流带来的误差。但如果工作在非常宽的温度范围(-20℃-80℃),在放大器的正负输入端加平衡电阻能很好地阻止输入带来的误差。

图3:齐纳二级管偏置电路。
设计单电源运算放大器电路,需要考虑输入偏置电流误差、电源抑制、增益、以及输入与输出线路带宽等等。然而普通的应用设计是可以通过查表来获得,见表1。在单电源电压为15V或12V时偏置分压的两个电阻通常选用100kΩ,这样可以在电源消耗与输入偏置电流误差之间合理的折中。5V单电源偏置分压电阻减小到一个比较低的值,例如42kΩ。还有些在3.3V应用中偏置分压电阻选在27kΩ左右。

齐纳二级管偏置电路

表3:电路参数及期间参数选择。
虽然电阻偏置电路技术成本很低,并且始终能保持运放输出控制在Vs/2,但运放的共模抑制能力完全依靠RA/RB与C2构成的RC时间常数。通过使用C2可以提高至少10倍的RC(RC通过R1/C1与RIN/CIN的网路构成)时间常数,这将有助于提高共模抑制比。RA与RB在使用100kΩ,并且电路带宽没有降低的时候,C2可以保持相当小的容量。也可以采用其它的方法在单电源中提供偏置电压,并且有很好的电源抑制与共模抑制。比如在偏置电路中可以使用一个齐纳二极管调整偏置电压,提供静态工作点。

图4:利用相同的齐纳二极管的反相放大器电路的偏置方法。
在图3中,电流通过电阻RZ流到齐纳二极管,形成偏置工作点。电容CN可以阻止齐纳二极管产生的噪声通过反馈进入运放。要想实现低噪声电路需要使用一个比10uF还大的CN,并且齐纳二极管应该选择一个工作电压在Vs/2。电阻RZ必须选择能够提供齐纳二极管工作在稳定的额定电压上和保持输出噪声电流比较低的水平上。因为运放的输入电流只有1pA左右,几乎接近零,所以为了减小输出噪声电流,低功耗的齐纳二极管是非常理想的选择。可以选择250mW的齐纳二极管,但为了考虑成本,选择500mW的齐纳二极管也是可以接受。齐纳二极管的工作电流会因制造商的不同有些差别,在应用中一般IZ在5mA(250mW)与5uA(500mW)之间比较好。

表4:电路参数及期间参数选择
在齐纳二极管的工作极限范围之内,采用下面电路(图3、图4)将有比较好的电源抑制能力。但这个电路有一些缺陷,因为运放输出的静态工作点是齐纳二极管的电压而不是Vs/2。如果电源电压下降,大信号输出的波形将会失真(出现不对称的削顶波形),此时电路还要消耗更多的电能。电阻RIN与R2应该选择相同的电阻值,防止偏置电流引起更大的失调电压误差。

关键字:单电源  运算放大器  去耦电路 编辑:冰封 引用地址:单电源运算放大器的偏置与去耦电路设计

上一篇:DC/DC电源中的纹波抑制设计
下一篇:新一代PCI背板的电源管理需求

推荐阅读最新更新时间:2023-10-18 15:57

运算放大器设计原理
一、集成电路及其特点   集成电路是利用氧化,光刻,扩散,外延,蒸铝等集成工艺,把晶体管,电阻,导线等集中制作在一小块半导体(硅)基片上,构成一个完整的电路。按功能可分为模拟集成电路和数字集成电路两大类,其中集成电路运算放大器(线性集成电路,以下简称集成运放)是模拟集成电路中应用最广泛的,它实质上是一个高增益的直接耦合多级放大电路。   集成电路的特点   1. 单个元件精度不高,受温度影响也大,但元器件的性能参数比较一致,对称性好。适合于组成差动电路。   2. 阻值太高或太低的电阻不易制造,在集成电路中管子用得多而电阻用得少。   3. 大电容和电感不易制造,多级放大电路都用直接耦合。   
[模拟电子]
<font color='red'>运算放大器</font>设计原理
0.6μm CMOS工艺全差分运算放大器的设计
0 引言 运算放大器是数据采样电路中的关键部分,如流水线模数转换器等。在此类设计中,速度和精度是两个重要因素,而这两方面的因素都是由运放的各种性能来决定的。 本文设计的带共模反馈的两级高增益运算放大器结构分两级,第一级为套筒式运算放大器,用以达到高增益的目的;第二级采用共源级电路结构,以增大输出摆幅。另外还引入了共模反馈以提高共模抑制比。该方案不仅从理论上可满足高增益、高共模抑制比的要求,而且通过了软件仿真验证。结果显示,该结构的直流增益可达到80 dB,相位裕度达到80°,增益带宽为74 MHz。 1 运放结构 通常所用的运算放大器的结构基本有三种,即简单两级运放、折叠共源共栅和套筒式共源共栅
[模拟电子]
利用数字变阻器和运算放大器构建可变增益反相放大器
功能指标   利用数字变阻器AD5270/AD5272和运算放大器AD8615构建紧凑型、低成本、5 V、可变增益反相放大器    电路说明   图1所示电路采用数字变阻器 AD5270/AD5272 和运算放大器AD8615 ,提供一种紧凑型、低成本、低电压、可变增益反相放大器。AD5270/AD5272(10引脚3 mm × 3mm × 0.8 mm LFCSP)和AD8615(5引脚TSOT-23)封装尺寸小、成本低,为模拟信号处理电路提供了业界领先的解决方案。   该电路提供1024种不同增益,可通过SPI(AD5270)或I2C(AD5272)兼容型串行数字接口控制。AD5270/A
[模拟电子]
MAX9633低噪声,低失真运算放大器
在MAX9633是一款低噪声,低失真运算放大器,优化驱动从DC应用中使用到数MHz的ADC。在MAX9633具有低噪声(3nV/√Hz的在1kHz和3.5nV/在100Hz)和低失真(130dB的10kHz时),使其适用于工业,医疗和测试应用。 异常快速的建立时间和低输入失调电压,使一个优秀的解决方案的IC驱动高解析度12位至18位SAR ADC的。该IC工作在宽电源电压范围每个放大器的静态电流只有三点五毫安高达36V。该集成电路采用8引脚,3mm x 3mm TDFN封装操作封装在-40° C至+125 ° C温度范围。 关键特性 低噪声(3nV/1kHz时)和低失真(130dB的在10kHz)ADC驱动器 建立时间非常快
[模拟电子]
衬底驱动轨至轨运算放大器设计
随着便携式电子产品和超深亚微米集成电路技术的不断发展,低电源电压低功耗设计已成为现代CMOS运算放大器的发展趋势。降低功耗最直接有效的方法是降低电源电压。然而电源电压的降低,使得运算放大器的共模输入范围及输出动态范围随之也降低。同时,电路电源电压的降低将受到MOSFET阈值电压的限制。针对这一问题,衬底驱动轨至轨技术应运而生,不但有效地降低了MOSFET的阈值电压,从而直接降低了电路的电源电压,并且使共模输入范围能够达到全摆幅。但是衬底驱动MOSFET的输入跨导小,输入电容较大,从而限制了电路的最高工作频率。因此,衬底驱动输入级的引入,将不可避免地降低运放的第一级增益。为此,本文采用改进型前馈式AB类输出级以增加有效输入级跨导,从
[模拟电子]
衬底驱动轨至轨<font color='red'>运算放大器</font>设计
ADA4625-1 JFET运算放大器的性能特点及应用分析
宽带宽、低电压噪声和低输入偏置的结合使得A4625-1尤为适合、有源滤波、高调谐压控和前置放大器。
[机器人]
ADSL模拟前端中低噪声高速运算放大器的应用简介
随着上网的人数的迅速增长,传统调制解调器、ISDN提供的低速和易断线的窄带上网方式开始逐渐遭到用户的摈弃。在各种各样的宽带连网方案中,ADSL受到了广大网民的青睐。但是,如何选择理想的ADSL调制解调器解决方案,是设计工程师所面临的新挑战。 针对这种现状,本文介绍采用LMH6643满摆幅输出芯片、LMH6672线路驱动器及LMH6622低噪声运算放大器 组合实现的方案,该方案具有能充分发挥ADSL基带数字信号处理器性能的优点。结构框图参见图1所示。 图中数字模拟转换器的输出端可采用在LMH6643芯片中的一对放大器作为差分缓冲放大器,提供LMH6643与LMH6672之间的低通滤波器的阻抗匹配、绝缘及驱动。图
[模拟电子]
ADSL模拟前端中低噪声高速<font color='red'>运算放大器</font>的应用简介
通用型运算放大器,通用型运算放大器是什么意思
通用型运算放大器的组成 通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例A741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。 通用型运算放大器 产品编号 产品叙述 规格书 相容IC MSV358 CMOS轨对轨输出双运算放大器 , 声频应用 NS TI LMV358
[模拟电子]
通用型<font color='red'>运算放大器</font>,通用型<font color='red'>运算放大器</font>是什么意思
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved