大家最早可能接触,也是可能接触最多的电路拓扑应该是flyback.至少我刚刚接触电源的时候,最先就是flyback.不会设计,连分析也不懂,唯一能做的是模仿(额,难听点就是抄袭了:( ).这样子的状态持续了一段时间后,才开始慢慢的有一些了解.为了让初学者能更快的上手,少走弯路,于是有了这一章.
为了分析flyback电路,我们从flyback的源头开始说吧.Flyback是从最基本的三种电路中的buck-boost演变而来的.所以对buck-boost的分析,一定有助于对flyback的分析,而且buck-boost看起来似乎要比flyback简单,至少它没有变压器吧.
为了证明我没有骗你,下面将要开始来对buck-boost进行演变,最终会演变成flyback.
图一
图一 是buck-boost的原型电路. 把电感L绕一个并联线圈出来,如图二:
图二
把L的2个并联线圈断开连接,并且改变圈数比,改为:1:n,如图三:
图三
把图三中的二极管沿着所在回路移动,变成阴极朝外的样子,并且,改变输出电压V和接地的位置如图四:
图四
把图四中的Q顺着回路移动到变压器下方,如图五:
图五
把图五的电路,重新整理一下成图六.^_^,这样子和你见到的flyback有点像了吧.
图六
以上说明,我们研究buck-boost的行为特性,对研究flyback的行为特性有很大的帮助.
1. 电路工作在连续状态(CCM),也就是说电感电流L是连续的,任何时候电感中总存在电流.(电路的另一种工作状态DCM将在以后的章节中分析)
2. 在一的假设下,电路工作就可以分成2个状态,状态1,Q开通,二极管D关断,这个状态时间长度为t1, ,Ts为周期,这个状态记为d,状态2,Q关断,二极管D开通,这个状态记为 ,d' =1-d.
3. 电感L中的电流 纹波和电容C上的电压纹波相对其直流分流来说都很小.一个好的设计,要求输出的电压纹波总是很小,所以,C的纹波小,总是成立的.
4. 所有的损耗都不讨论先.即,电路所有原件是理想的.
5. 电路工作在一个稳定的状态下.
第一个工作状态:mosfet Q开通,二极管D关断.如图八所示:
图八
列写状态方程:
(1)
(2)
因为有前面的假设,所以2可以简化为:
(3)
状态1的持续时间为 dTs.
第二个工作状态:Mosfet Q关断,二极管D开通.如图九所示:
图九
(4)
(5)
状态2持续时间为(1-d)Ts,记为d'Ts.
由于这是一个和谐的电路,所以有:
(6)
(7)
解等式 6 和 7 ,并利用 d+d' =1可得:
(8)
(9)
从等式 8 看到了在CCM模式下面buck-boost的直流增益,因为flyback是从buck-boost变来的,所以我们猜测flyback的直流增益应该和这个有些像(具体见后文推导).
从等式 9 看到了在CCM模式下面buck-boost的电感的平均电流就等于输出的电流除以d'.接着马上研究一下mosfet和D所承受的电压.
在状态1,二极管D关断,所承受的反压为:
(10)
利用等式8的结果,则(10)可以写为: (11)
同理可在状态 2 计算Mosfet所承受的电压: (12)
等式 11 和等式 12 在告诉我们,占空比 d 越大,输出电压V的值越高,Mosfet和二极管D所承受的电压越高(好像是废话,输出电压越高,直观来说器件所承受的电压也越高嘛).等式 11 和等式 12,不仅仅验证了这个直观的想法,而且定量的给出了电压的大小,这个是有意义的事情.
下面研究一下这个电路中的电流吧.
电感的平均电流i等式9 已经给出,是和输出电流相关,那电感的纹波电流呢?
在状态1,电感电流的示意图如图十所示(在画图板里面画的图,难看一点了,能看明白就好了,将就用下吧):
图十
从图十中计算:
(13)
这个的大小是可以被设计的.而且,如果电路是理想无损耗的话,当输入电压和输出电压确定后,这个值是不随着输出电流变化的,它被电感所确定了!这个很重要,对后面的DCM状态的分析很重要.前面有假设相对i很小,那现在给出一个具体的值,比如 设计成i的5%.
有效值(RMS)的计算,按照公式是这么算:
(14)
在电源中,最常见的是梯形波(三角波是梯形波的一种特殊形式),每次都按 14 的方法计算RMS值是不是觉得很烦呢?有没有简单的方法啊?答案,有,下面就是一个很简单的计算诸如梯形波一类分段线性函数的有效值的方法.真的很简单,像梯形波这样子,一般用心算就可以得出来近似值了哦...
一个如图十一的波形,有效值可以这样子计算:
其中D1,D2,D3,分别表示该段经历的时间占总时间的比例.
好,马上来利用一下我们的秘籍来计算通过Mosfet,二极管D和电感的RMS电流.这个事情很有意义.
已经假设为5%的i的大小,则通过Mosfet的RMS电流
(15)
有发现什么没有?这个值是不是非常接近于用电感电流的平均值i来计算的RMS值啊(说明在小纹波的情况下,用平均值来代替RMS值,是一个好办法.因为通常来说,平均值都比RMS值好计算^_^).
同理,流过二极管D的RMS电流可以表示为:
(16)
流过电感L的RMS电流可以表示为:
(17)
到这里,几乎所有的原件都计算了,除了C.下面就来计算C的一些东西.
C上的纹波电压.利用我们前面的假设,在d'时间段内,有:
(18)
所以有:
(19)
对C进行充放电的电流只是纹波电流,其直流成分都供给了负载,所以有:
(20)
其中 表示输出电流并且
好,到现在为止,你已经是一个CCM模式的buck-boost的初级设计师了。
下面开始我们的flyback的分析之旅.首先推出一个叫做简单变压器模型的东西,用这个东西可以简单的模拟变压器,就能对有变压器的电路开始做分析了.图十二,给出了这个简单的模型.
图十二
其中Lm代表着励磁电感,其它部分则是一个理想变压器.对一个设计良好的变压器来说,需要的励磁电流,总是占总电流的很小的一部分.这个简单的变压器模型忽略了诸如漏感,耦合电容,层间电容,电阻等参数.但是,这个模型做为开始的分析让然是一个好的选择.
下面就把这个简单的变压器的模型插入到我们的flyback的电路(图六)当中,并规定电压电流的正方向,如图十三所示.
假定这个flyback电路仍然工作在稳定的CCM状态.
在状态1 mosfet Q开通,二极管D关断,电路如图十四所示.
图十四
应用我们最开始的假设,然后列写状态方程:
(21)
(22)
(23)
这个状态持续时间为dTs.Lm中的电流i在Vg的作用下,线性增加,斜率为.能量储存在Lm中.
在状态2 Mosfet Q关断,二极管D开通,电路如图十五所示.
图十五
在最开始的假设情况下,列写状态方程:
(24)
(25)
(26)
这个状态持续时间为 ,Lm中的电流i在二次侧折射电压的作用下,开始线性减少,斜率为.能量转移到输出.
在经过一个周期的折腾后,电感Lm电流回到周期开始的点,C上的电压回到周期开始的点.因为,这是一个工作在和谐状态下的电路.所以有:
(27)
(28)
输入电流ig的周期平均值为:
(29)
解等式 27 和等式 28 得:
(30)
(31)
对比等式 30 和等式 8 以及等式 31 和等式 9. 发现没有,是不是buck-boost和flyback的直流增益很像?也说明了,flyback是由buck-boost演变而来的.
下面研究Mosfet和二极管D所承受的电压.
(32)
(33)
用等式(30)来做简化,则有:
(34)
(35)
电感纹波电流的算法,在等式 13 中已经给出.
同样假设设计为i的5%.则通过Mosfet的RMS电流油等式 15 给出.通过二极管D的RMS电流为:
(36)
输入的RMS电流等于Mosfet的RMS电流.
照前面的方法计算C的纹波电流的RMS值为:
(37)
纹波电压为:
(38)
到现在为止,好像CCM-flyback的draft(这里我实在找不到一个合适的词来形容,所以就只好用这个字了.希望都能明白这个字后面的意思)设计呼之欲出了啊.
到这里,如果正好你也看过了 菜鸟课堂1 的话,那恭喜你,你已经是初级的ccm-flyback设计师了.可以开始做自己的flyback了,虽然性能还很差,也许变压器还会饱和,可能还会响,但不管怎样,这是第一个哦.
今天最后附上一个礼物送给大家,CCM-flyback的参数计算表格.
工作在DCM情况下的flyback比在CCM下多了一个工作状态 3. 工作状态1 和工作状态2 与CCM的工作状态1 和2 相同,在工作状态3下,Mosfet Q 和二极管D都处于关断状态.三个工作状态分别如图十六,图十七, 图十八所示.经历时间分别为d1Ts,d2Ts,d3Ts.
图十六
图十七
图十八
分别对3个状态列写状态方程.
状态1有:
(39)
(40)
(41)
状态2 有:
(42)
(43)
(44)
状态3有:
(45)
(46)
(47)
一个好的设计,输出电压V的纹波比电压V小很多.忽略电压纹波,有:
(48)
从等式 48 中得到的V/Vg的表达式中含有d2,这个不是想要的形式.想办法把d2消去. C里面只流过纹波电流,直流成分都输出给负载.所以通过二极管D电流的平均值就等于输出到负载上的电流.
(49)
二极管的平均电流也可以这样子计算(因为是三角波):
(50)
表示的是流过二极管的峰值电流.与ipk的的关系是:
(51)
ipk是可以计算的,表示为:
(52)
解 等式 48 到52 可得:
(53)
把Lm用Lsec来表示,则等式 53 可以写成(d1就是占空比d):
(54)
请牢牢记住的这种形式吧,会有很多地方用到的.
把 等式 54 带回到 等式 48中,则可得:
(55)
按照惯例,先计算下Mosfet Q和二极管D的最大电压.
(56)
(57)
流过Mosfet Q,二极管D和电容C的RMS电流表示为:
(58)
(59)
(60)
上一篇:一种电子系统认证芯片的电源规划
下一篇:如何选购ups电源
推荐阅读最新更新时间:2023-10-18 16:00
- 热门资源推荐
- 热门放大器推荐
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况