气体放电管在浪涌抑制电路的应用

最新更新时间:2011-11-11来源: 互联网关键字:浪涌电压抑制  气体放电管  应用 手机看文章 扫描二维码
随时随地手机看文章

摘要:阐述了浪涌电压产生的机理,介绍了气体放电管的工作原理、特性参数和在浪涌抑制电路中的应用。

关键词:浪涌电压抑制;气体放电管;应用

 

1  浪涌电压的产生和抑制原理

    在电子系统和网络线路上,经常会受到外界瞬时过电压干扰,这些干扰源主要包括:由于通断感性负载或启停大功率负载,线路故障等产生的操作过电压;由于雷电等自然现象引起的雷电浪涌。这种过电压(或过电流)称为浪涌电压(或浪涌电流),是一种瞬变干扰。浪涌电压会严重危害电子系统的安全工作。消除浪涌噪声干扰,防止浪涌危害一直是关系电子设备安全可靠运行的核心问题。为了避免浪涌电压损害电子设备,一般采用分流防御措施,即将浪涌电压在非常短的时间内与大地短接,使浪涌电流分流入地,达到削弱和消除过电压、过电流的目的,从而起到保护电子设备安全运行的作用。

2  浪涌电压抑制器件分类

    浪涌电压抑制器件基本上可以分为两大类型。第一种类型为橇棒(crow bar)器件。其主要特点是器件击穿后的残压很低,因此不仅有利于浪涌电压的迅速泄放,而且也使功耗大大降低。另外该类型器件的漏电流小,器件极间电容量小,所以对线路影响很小。常用的撬棒器件包括气体放电管、气隙型浪涌保护器、硅双向对称开关(CSSPD)等。

    另一种类型为箝位保护器,即保护器件在击穿后,其两端电压维持在击穿电压上不再上升,以箝位的方式起到保护作用。常用的箝位保护器是氧化锌压敏电阻(MOV),瞬态电压抑制器(TVS)等。

3  气体放电管的构造及基本原理

    气体放电管采用陶瓷密闭封装,内部由两个或数个带间隙的金属电极,充以惰性气体(氩气或氖气)构成,基本外形如图1所示。当加到两电极端的电压达到使气体放电管内的气体击穿时,气体放电管便开始放电,并由高阻变成低阻,使电极两端的电压不超过击穿电压。

(a)  BB型                            (b)BBS型

图1  气体放电管的基本外形

4  气体放电管与其它浪涌抑制器件参数比较

    1)火花间隙(Arc chopping)

    为两个形状象牛角的电极,彼此间有很短的距离。当两个电极间的电位差达到一定程度时,间隙被击穿打火放电,由此将过电流释放入地。

    优点:放电能力强,通流容量大(可做到100kA以上),漏电流小;

    缺点:残压高(2~4kV),反应时间慢(≤100ns),有跟随电流(续流)。

    2)金属氧化物压敏电阻(Metal oxside varistor)

    该器件在一定温度下,导电性能随电压的增加而急剧增大。它是一种以氧化锌为主要成分的金属氧化物半导体非线性电阻。没有过压时呈高阻值状态,一旦过电压,立即将电压限制到一定值,其阻抗突变为低值。

    优点:通流容量大,残压较低,反应时间较快(≤50ns),无跟随电流(续流);

    缺点:漏电流较大,老化速度相对较快。

    3)瞬态抑制二极管(Transient voltage suppressor)

    亦称齐纳二极管,是一种专门用于抑制过电压的器件。其核心部分是具有较大截面积的PN结,该PN结工作在雪崩状态时,具有较强的脉冲吸收能力。

    优点:残压低,动作精度高,反应时间快(<1ns),无跟随电流(续流);

    缺点:耐流能力差,通流容量小,一般只有几百安培。

    4)气体放电管(Gas discharge tube)

    气体放电管可以用于数据线、有线电视、交流电源、电话系统等方面进行浪涌保护,一般器件电压范围从75~10000V,耐冲击峰值电流20000A,可承受高达几千焦耳的放电。

    优点:通流量容量大,绝缘电阻高,漏电流小;

    缺点:残压较高,反应时间慢(≤100ns),动作电压精度较低,有跟随电流(续流)。

    各种浪涌抑制器件的共同特点为器件在阈值电压以下都呈现高阻抗,一旦超过阈值电压,则阻抗便急剧下降,都对尖峰电压有一定的抑制作用。但各自都有缺点,因此根据具体的应用场合,一般采用上述器件中的一个或者几个的组合来组建相应的保护电路。各种浪涌抑制器件的参数对比见表1所列。

表1  几种常用浪涌抑制器参数比较

  气体放电管 压敏电阻 浪涌抑制二极管
类型 橇棒 箝位 箝位
反应时间 <1μs <50ns <1ns
典型电容量/pF 1 500~5000 50
漏电流 <1pA 5~10μA 200μA
最大放电电流/A(8×20μs波形) 20000 6500 50

5  气体放电管的主要参数

    1)反应时间指从外加电压超过击穿电压到产生击穿现象的时间,气体放电管反应时间一般在μs数量极。

    2)功率容量指气体放电管所能承受及散发的最大能量,其定义为在固定的8×20μs电流波形下,所能承受及散发的电流。

    3)电容量指在特定的1MHz频率下测得的气体放电管两极间电容量。气体放电管电容量很小,一般为≤1pF。

    4)直流击穿电压当外施电压以500V/s的速率上升,放电管产生火花时的电压为击穿电压。气体放电管具有多种不同规格的直流击穿电压,其值取决于气体的种类和电极间的距离等因素。

    5)温度范围其工作温度范围一般在-55℃~+125℃之间。

    6)电流—电压特性曲线以美国克来电子公司CG2-230L气体放电管为例,如图2所示。

    7)绝缘电阻是指在外施50或100V直流电压时测量的气体放电管电阻,一般>1010Ω。

图2  电流—电压特性曲线

6  气体放电管的应用示例

    1)电话机/传真机等各类通讯设备防雷应用

    如图3所示。特点为低电流量,高持续电源,无漏电流,高可靠性。

图3  通讯设备防雷应用

    2)气体放电管和压敏电阻组合构成的抑制电路

    图4是气体放电管和压敏电阻组合构成的浪涌抑制电路。由于压敏电阻有一致命缺点:具有不稳定的漏电流,性能较差的压敏电阻使用一段时间后,因漏电流变大可能会发热自爆。为解决这一问题在压敏电阻之间串入气体放电管。但这又带来了缺点就是反应时间为各器件的反应时间之和。例如压敏电阻的反应时间为25ns,气体放电管的反应时间为100ns,则图4的R2,G,R3的反应时间为150ns,为改善反应时间加入R1压敏电阻,这样可使反应时间为25ns。

图4  气体放电管和压敏电阻配合应用

    3)气体放电管在综合浪涌保护系统中的应用

    自动控制系统所需的浪涌保护系统一般由二级或三级组成,利用各种浪涌抑制器件的特点,可以实现可靠保护。气体放电管一般放在线路输入端,做为一级浪涌保护器件,承受大的浪涌电流。二级保护器件采用压敏电阻,在μs级时间范围内更快地响应。对于高灵敏的电子电路,可采用三级保护器件TVS,在ps级时间范围内对浪涌电压产生响应。如图5所示。当雷电等浪涌到来时,TVS首先起动,会把瞬间过电压精确控制在一定的水平;如果浪涌电流大,则压敏电阻起动,并泄放一定的浪涌电流;两端的电压会有所提高,直至推动前级气体放电管的放电,把大电流泄放到地。

图5  三级保护

7  结语

    各种电子系统,以及通信网络等,经常会受到外来的电磁干扰,这些干扰主要来自电源线路的暂态过程、雷击闪电、以及宇宙射电等。这些干扰会使得系统动作失误甚至硬件损坏。针对这些问题,要做好全面的预防保护措施,就需要先找到问题的根源,再选用合适的浪涌抑制器件予以解决。

关键字:浪涌电压抑制  气体放电管  应用 编辑:冰封 引用地址:气体放电管在浪涌抑制电路的应用

上一篇:大功率整流器中快速熔断器的选型
下一篇:DC/DC变换器中输出滤波器的比较

推荐阅读最新更新时间:2023-10-18 16:03

MAX504型D/A转换器在无刷同步发电机中的应用
1 引言   无刷同步发电机励磁控制装置主要应用于 DF11 型和 DF8B 型铁路内燃干线机车的交流辅助传动系统。无刷励磁控制装置和交流辅助发电机共为一体,对发电机的励磁机励磁进行控制,从而达到控制发电机励磁的目的,通过无刷励磁控制装置的控制信号,使交流辅助发电机在不同工况下保证 U/f 比恒定。当负载突然变化时,励磁控制装置能迅速调节励磁电流,使发电机输出特性变硬,保证辅助系统稳定工作。无刷同步发电机励磁控制装置的结构如图 1 所示,无刷同步发电机励磁控制装置需采集发电机输出交流电压 Va 、 Vb 、 Vc 等模拟量,经过信号测量电路取得电压信号和转速信号,发电机转速信号输入到 80C196M
[工业控制]
传感器网络的应用研究
传感器 网络有着巨大的应用前景,被认为是将对21世纪产生巨大影响力的技术之一。已有和潜在的传感器应用领域包括:军事侦察、环境监测、医疗、建筑物监测等等。随着传感器技术、无线通信技术、计算技术的不断发展和完善,各种传感器网络将遍布我们生活环境,从而真正实现“无处不在的计算”。以下简要介绍传感器网络的一些应用。 (1)军事应用 传感器网络研究最早起源于军事领域,实验系统有海洋声纳监测的大规模传感器网络,也有监测地面物体的小型传感器网络。现代传感器网络应用中,通过飞机撒播、特种炮弹发射等手段,可以将大量便宜的传感器密集地撒布于人员不便于到达的观察区域如敌方阵地内,收集到有用的微观数据;在一部分传感器因为遭破坏等原因失效时,
[传感器]
应用于SoC设计中IP核的接口技术
引言   随着半导体技术的发展,深亚微米工艺加工技术允许开发上百万门级的单芯片,已能够将系统级设计集成到单个芯片中即实现片上系统SoC。IP核的复用是SoC设计的关键,但困难在于缺乏IP核与系统的接口标准,因此,开发统一的IP核接口标准对提高IP核的复用意义重大。本文简单介绍IP核概念,然后从接口标准的角度讨论在SoC设计中提高IP核的复用度,从而简化系统设计和验证的方法,主要讨论OCP(开放核协议)。   图1 OCP工作原理示意图   图2  读/写操作的时序   图3  读/写状态机   OCP简介   基于IP核复用技术的SoC 设计使芯片的设计从以硬件为中心转向以软件为中心,芯片设计不再是门级
[嵌入式]
合众达推出SEED-DEC137/6747工业应用模板
  合众达电子率先发布了SEED-DEC137工业控制应用开发模板,SEED-DEC137基于OMAP-L137双核低功耗应用处理器,ARM926EJ(300MHz)+ C674x 浮点DSP(300MHz),重点应用于工业领域(仪器仪表、电力控制、电机控制等)、实时数据处理等场合。           同步推出SEED-DEC6747,接口与SEED-DEC137完全相同,采用TMS320C6747单核浮点DSP处理器,主频可达300MHz。DEC6747没有配置LCD。            SEED-DEC137硬件性能:   1、CPU:ARM926EJ(300MHz)+ C674x 浮点DSP(300MHz)
[工业控制]
真有效值直流转换芯片AD536A在直流点焊微机控制系统中的应用
    摘要: AD536A是美国AD公司推出的一种能够将直流/交流信号快速转换成真有效值输出的集成芯片。直流点焊微机控制系统是直流点焊微机控制箱的核心控制系统。本文简要介绍了AD536A的性能特点、工作原理以及连接方式,并且着重说明了它在直流点焊微机控制系统中作用,同时给出了该系统焊接电流流检测控制回路的原理框图。     关键词: 真有效值转换 直流点焊微机控制系统 恒流闭环回路 AD536A 1 概述 点焊微机控制箱在焊接过程中主要用来实现对点焊机的焊接控制,可广泛用于汽车、飞机制造业及其他行业,其发展趋势是高性能、高可靠性和小型化。笔者在航空飞行器的焊接过程中使用了直流点焊微机控制箱取得了良好的
[应用]
泰斗微电子首次实现北斗2芯片规模应用
随着近期第五颗北斗二代导航卫星的成功发射,我国北斗卫星导航系统组网建设又向前迈出了重要一步,即将进入下一个快速组网阶段,进而奠定了全球定位系统四足鼎立的格局。就在北斗系统加紧布局之时,国内各芯片厂商也纷纷瞄准北斗导航产业的巨大商机,争先研制应用于终端产品的北斗二代芯片。其中,泰斗微电子已于不久前先于业界研制出国内首颗北斗2/GPS双模SOC基带芯片,并将其最早应用于公共交通监控管理系统上。至此,我国的北斗系统迎来了“天地合一,齐头并进”的快速发展阶段。 兼容是趋势 目前我国已明确了在对于涉及国家经济、公共安全的重要行业领域,必须逐步过渡到采用北斗卫星导航兼容其他卫星导航系统的服务体制;这是由于出于安全的因素
[网络通信]
【51单片机实验】5-串行接口与键盘接口技术应用
一、实验目的 1.掌握51单片机串行口的应用设计 2.掌握按键的工作原理和消抖动的方法 二、实验设备 1、微机一台,Keil C集成开发环境 2、DP-51PRO.NET综合实验箱 3、Proteus仿真软件 三、实验内容 1、P1接8个按键或拨位开关,P2接8个发光LED,编程实现读入单片机P1状态,通过串行方式1实现自发、自收,并将接收到的内容从P2口的LED显示出来。(注意:TXD(P3.1)和RXD(P3.0)的接线。—实验箱的要求,仿真请忽略) 程序及必要的注释: /*单片机自发自收,将P1口信息传给P2口*/ #include reg51.h void main () { SCON
[单片机]
【51单片机实验】5-串行接口与键盘接口技术<font color='red'>应用</font>
单片机复位标志位的设置与应用研究
引言 设置复位标志位便于区分不同原因引发的复位,作为一种新技术被越来越多的新型单片机所采纳。例如Philips公司的P87LPC700和 P89LPC900系列、Freescale公司(原Motorola半导体部)的MC68HC05系列和MC68HC08系列、Sunplus公司的 SPMC65系列、Microchip公司的PIC系列等,内部都设计了专门用于记录各种复位标志的状态寄存器。 MC68HC08系列有一个复位状态寄存器,负责记录6种复位标志位:上电复位、引脚复位、看门狗复位、非法指令复位、非法地址复位和欠压复位。SPMC65系列有一个系统控制寄存器,负责记录5种复位标志位:上电复位、外部复位、看门狗复位、非法地
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved