基于滑模控制感应加热电源的电流仿真分析

最新更新时间:2011-11-12来源: chinaaet关键字:感应  加热电源  软开关技术 手机看文章 扫描二维码
随时随地手机看文章

  1 引 言

  本文介绍一种应用软开关技术的感应加热逆变电源控制器。运用软开关技术,功率器件在电流过零点时进行切换,电流控制器采用离散时间状态。在电路参数有规律的采样中,输出电流可以离散化,得到离散数学模型。针对感应加热电源逆变控制器,提出了一种准滑模控制策略。该控制方案的优点有:设计的系统控制简单,容易满足实际的工业应用,可进行数字化处理;设计的系统控制对逆变器参数变化不敏感;控制系统可以实现全范围的系统操作。

  采用滑模控制方式的逆变器与传统控制方式相比,具有良好的动态特性、鲁棒性以及在电源和负载大范围变化时能保证系统稳定性的优点。滑模控制方式要求全状态变量反馈,且需要相应的基准参考量,增加电路设计的复杂性,所以一般的滑模控制方式大多停留在理论分析和仿真阶段。

  滑模控制与常规控制的根本区别在于控制的不连续性,即一种使系统“结构”随时间变化的开关特性。由于功率变换器中开关元件的存在,使滑模变结构控制理论得到广泛应用。

  2 负载回路的数学模型

  图1为串联谐振感应加热系统电路结构图,其中负载回路由电容Cc、感抗L和电阻R串联形成振荡回路。假设直流电压Vdc连续,C远大于振荡电容Cc,变压器变比N为1。

  假定初始电流为零,负载电路上电压为VS,则输出电流i0和电容电压vc的时域方程为:

  由于采用软开关技术,系统的开关频率等于振荡频率。串联谐振电路的输入电压vs可由以下开关状态决定:

  为方便地表述逆变器运行状态,引入一个新的离散变量M(k)如下;

  图2为运行状态描述,(a)为开关导通状态;(b)为输出电流io,整流电流∣io∣,参考电流Iref,每半周期电流峰值Io;(c)为运行状态(1:输入功率模式,0:自由衰减模式);(d)变压器二次侧电压Vs。

  于是,式(3)可改写成为:

  该式表明,运行状态一旦确定,Vs的幅值为Udc,符号由i0(t)决定,式(5)中T=π/ωd是半个振荡周期,每半个振荡周期的输出电流峰值绝对值Io和电容电压Vc可用离散变量表示。由于Q远大于1,可认为;Vc比Io滞后π/2,可得差分方程:

  电容电压Vc离散状态的动态峰值由式(7)自身表示。将式(7)代入式(6),就可得负载回路的离散电流状态方程:

  M=1电路工作在输入功率模式下,谐振环节电流持续增加;

  M=0电路工作在自由衰减模式下,谐振环节电流不断减小;

  M=-1电路工作在再生功率模式下,谐振环节电流较自由衰减模式减小更快;

  本文只使用前2种工作模式,即在功率输入与自由衰减2种状态运行,变量u(k+1)表示电流控制强度,实际取值为{1,0.5,0}。根据以上分析得到的离散电流动态模型,可分析电流控制器设计方案。

  3 滑模变结构电流控制策略

  本节讨论一种应用比例积分滑模的电流控制技术。目的是使在稳态下输出电流峰值的绝对值Io有一个较小的电流偏移量时,能够较为准确地跟随于期望的参考电流Iref,在阶跃输入时可以有快速的瞬态响应和较小的超调量。

  引入滑模变结构控制理论(the theory of VariableStructure Control,VSC)。所谓滑模变结构控制是:当系统状态运动到某特定点,使得由状态决定的切换函数值发生变化,系统运动方程由一种形式转换为另一种形式,即结构发生变化。在不断的结构变化中,系统以滑模形式运动至平衡点,由于逆变器内在的开关原理,使其非常适合滑模控制。它的突出优点是滑动模态可以具有对系统摄动、不确定性以及干扰的“完全自适应性”。由于电容和电感变化较小,可忽略其对滑模面的影响,故滑模控制策略有较好的适用性。电流控制的离散滑动模型可由式(8)表述。

  滑模切换函数的选取影响系统的动态品质,本文采用电流误差积分滑模面,切换函数可表述如下:

  S为离散滑模切换函数,Ki为积分增益,Ie=Iref-Io为电流误差。

  电流控制器的控制律为:

  感应加热系统电路参数L,C和R已定,则滑模控制系统响应完全由Ki决定。采样保持器检测输出电流峰值,并保存1个振荡周期,与参考信号比较并产生误差信号。电流控制器的输出决定下一个运行状态,当过零检测器检测到过零信号时就切换开关状态。从滑模控制系统稳定性、快速响应性、较好的鲁棒性和负载变化不敏感性等方面考虑,可以用较大的增益Ki来快速补偿偏移量。增益Ki设计的恰当,就能有效消除基频偏移量,得到稳定的输出电流。

  3.1 积分器增益Ki的确定

  对于离散准滑模系统,准确到达切换面常是不可能的,这里假设:

  考虑到当Iref=Imax或Iref=0时为电流控制的极限值,且u(k+1)的值为{1,0.5,0),可确定增益值范围:

  3.2 切换面吸引性分析

  系统进入准滑动模态的到达条件:

  要保证实现滑模控制,必须使比例积分滑模控制切换面具有可到达性。考虑u(k)的控制作用,由图2可以看出,当输出电流连续2个T小于参考电流值Iref时,u(k+1)的值为1,系统处于功率输出状态,使负载电流峰值上升;当大于Iref两个T时,u(k+1)的值为0,系统就切换为自由振荡状态;由于负载消耗,电流峰值必然会小于Iref,通过u(k+1)的计算,系统又切换至功率输出状态。由上述分析可知,状态空间中任意工作点都可在控制律的作用下到达式(14)确定的切换面,即切换面具有可到达性。

  3.3 稳定性分析

  定义Lyapunov函数:

  4 仿真结果分析

  本文采用Matlab语言,编写M函数对上述模型进行仿真。参数选取如下:

  R=0.2 Ω,L=12.0μH,Cc=0.2μF

  计算可知电路谐振频率为100 kHz;增益Ki的值取为10000。设参考电流为60 A,初始电流值为0,N=4,则如图3所示。

  5 结语

  针对串联谐振感应加热电源逆变器,建立逆变器的负载回路离散数学模型,分析比例积分滑模控制电流控制器切换面参数的选择条件、可达性和滑模存在性及稳定性;选择适当的增益后,可使滑模控制对输出负载变化具有良好的快速性和鲁棒性。根据此模型,使基于DSP控制策略容易实现。

关键字:感应  加热电源  软开关技术 编辑:探路者 引用地址:基于滑模控制感应加热电源的电流仿真分析

上一篇:动态电源路径管理(DPPM)电池充电器的原理及应用
下一篇:基于L4981B的APFC电路设计性能优化

推荐阅读最新更新时间:2023-10-18 16:03

80C196MC在中频感应电源中的应用
摘要:针对晶闸管中频电源,提出了一种基于80C196MC的逆变控制电路,给出了该构思的硬件和软件设计。通过对试验结果进行了分析,证明该电路很好地实现了电源的扫频式零电压软启动和正常工作时槽路谐振频率的跟踪,而且简单实用,启动成功率高,可靠性和通用性得到改善。 关键词:晶闸管中频电源;逆变电路;微控制器;扫频式零压软启动;槽路谐振频率 1 概述 随着工业的发展,中频电源的应用也日益广泛,如在金属熔炼、透热、热处理、焊接等方面,其工作方式多采用并联逆变,结构如图1所示。其工作原理为采用三相桥式全控整流电路将交流电整流为直流电,经电抗器平波后,成为一个恒定的直流电流源,再经单相逆变桥,把直流电流逆变成一定频率的单相中频电流。负载是由感应线
[电源管理]
超声波感应器会被用于何处?—— 第二部分
近年来,消费类无人机越来越受欢迎,用于拍摄震撼的的片段、运送救援物资,甚至用于竞赛。大多数无人机使用各种传感技术实现自主导航、碰撞检测和许多其他功能。超声波传感尤其有助于无人机着陆、悬停和地面跟踪。 无人机降落辅助是无人机所具有的一项功能,可以检测无人机底部与着陆区域的距离,判定着陆点是否安全,然后缓慢下降到着陆区域。尽管GPS监测、气压传感和其他传感技术有助于着陆过程,但在这个过程中,超声波传感是无人机的主要和最准确的判断依据。大多数无人机中还有悬停和地面跟踪模式,主要用于捕捉连续镜头和陆地导航,其中超声波传感器有助于将无人机保持在高于地面的恒定高度。 本博文系列的第1部分 讨论了如何将超声波传感器与汽车应用相结合。本博文将
[传感器]
超声波<font color='red'>感应</font>器会被用于何处?—— 第二部分
英飞凌亚太总裁畅谈2008年汽车电子市场
  据CCID调查显示,中国汽车电子市场销售额在2007年约为1000亿元。且未来几年会以每年25%或者更高的速度快速增长,预计到2011年可达2400亿元。   如此大的市场,如此高的增长率,然而产品的功能却越来越趋于相同,汽车电子设计厂商如何实现差异化设计,打造“中国制造”品牌?为此,电子工程世界特别采访了英飞凌科技亚太区总裁兼执行董事潘先弟。 电子工程世界:与2007年相比,2008年汽车电子市场会呈现什么特点?   第一是更安全,因为消费者对安全要求提高。第二个是更低能耗,因为油价很高。第三个是加速性能越来越好,尤其是混合动力的加速性能。 电子工程世界:与2007年相比,英飞凌和中国本土企业的合作有什么变化?
[焦点新闻]
大功率谐振过渡软开关技术变频器研究(1)
摘要:对传统硬开关技术大功率变频器的特点,目前大功率变频器研究中存在的问题,大功率谐振过渡软开关变频器的研究目标,降低功率器件开关损耗的途径,软开关技术变频器拟实现的有关性能指标等方面的问题进行了概述。 关键词:大功率变频器;谐振过渡;软开关     在电力传动领域里,随着电力电子技术的不断完善和工业领域对大功率,高质量变频器日益迫切的需求,大功率变频装置的研究成为科研、开发的热点,也是电力电子变换技术在电力驱动方面科研成果转化的重点之一。 1 大功率变频器的特点 对于传统的硬开关技术变频器,由于功率器件的发展,已经形成了比较成熟的电路和控制方法。但对于大功率变频装置来说,有着它自己的
[电源管理]
大功率谐振过渡<font color='red'>软开关</font><font color='red'>技术</font>变频器研究(1)
英国开发出地下电缆光纤感应系统
    1/7/2011,据科学时报报道,保护边境、管道、地下电缆和关键基础设施免遭意外损坏和恶意破坏往往由于距离远、规模大而面临很多困难。如今,英国工程技术人员开发出了一种地下电缆光纤感应系统,从而有效地解决了这一难题。     该系统最长距离为40公里,既可以利用现有光导纤维,也可以另外铺设安装,能够同时发现多点干扰,精确度可以达到10米以内。     工程人员指出,如果用在边境和周边安全防护领域,任何人的攀爬、切割或者挖掘行为都会触动感应器,引发警报。之后,系统会给干扰归类,提供干扰的位置,并启动其他辅助装置或感应器(如摄像头),以保证操作人员可以作出适当的反应。如果用在电缆和管道保护中,挖掘机接近或人孔盖被掀起
[网络通信]
基于嵌入式技术感应按键设计1
1 引言   感应按键技术是一项新兴的技术,如今已经被广泛用于各种产品。特别是近两年来,采用感应按键的家电产品呈现雨后春笋般的繁盛景象。目前,市面上的这类产品主要有智能电冰箱、数字液晶电视、热水器、电热炉等家电产品。采用感应式按键的家电产品,可以设计出靓丽的控制面板,同时,与机械式按键相比具有更长的使用寿命。   目前, 感应按键 的应用方式主要有两大类:   ① 采用专用芯片,比如昆腾公司的感应按键芯片QT240、QT1101,以及康拓斯公司的CT1008等。这类芯片内部固化了处理感应按键的软件,能够对按键感应电极(金属弹簧或导电海绵)的信号进行采集和分析,最终将分析的结果以高低电平形式输出到应用系统的处理器I
[模拟电子]
基于嵌入式<font color='red'>技术</font>的<font color='red'>感应</font>按键设计1
感应加热技术主电路拓扑结构及控制原理解析方案
1.引言: 感应加热技术具有加热温度高、加热效率高、速度快、加热温度容易控制、易于实现机械化、自动化、无空气污染等优点,现在感应加热电源已广泛用于金属熔炼、透热、热处理和焊接等工业过程。 根据功率调节量的不同感应加热电源有多种调功方式,调频调功是通过改变逆变器工作频率从而改变负载输出阻抗以达到调节输出功率的目的 。这种调功方式控制比较简单,可以对电路的工作频率进行直接控制,而且能对功率连续调整。本文正是基于调频调功这种方式,由PWM控制芯片SG3525控制实现的加热电源。 2.主电路拓扑结构和控制原理: 2.1 主电路结构: 本文设计的感应加热电源为串联谐振式全桥IGBT逆变电源,其逆变主电路结构如图1所示。输
[嵌入式]
NV170D语音芯片在感应门铃/迎宾器上的应用
迎宾器又称感应门铃,用于小型店铺、便利店自动开启迎宾防盗作用的电子产品。它的前身是电子防盗报警器;刚开始人们是用它来防盗的,但后来因为电子防盗报警器发出的声音是刺耳的报警声,对进店的顾客产生消极的影响,后来演变成比较悦耳的声音,特别是:叮咚声,您好,欢迎光临,音效特受用户的青睐,顾客一进门就报出欢迎语音,起到了礼貌问候,从而做到提醒店员有人进店和迎宾的两重作用 。 感应门铃可以发出“:叮咚声,您好,欢迎光临!”主要的核心是应用了语音芯片——九芯电子NV170D语音芯片。 NV170D是一款性能稳定的语音芯片,无需任何外围电路,在极其恶劣的噪声环境下都可正常工作,它具有宽泛的耐温和耐压范围,正常工作范围宽达2V~5.5V,弥补了
[嵌入式]
NV170D语音芯片在<font color='red'>感应</font>门铃/迎宾器上的应用
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved