交流通路中理想直流电压源的短路处理

最新更新时间:2011-11-16来源: 互联网关键字:交流通路  理想直流电压源  短路处理 手机看文章 扫描二维码
随时随地手机看文章

 放大电路的特点是在工作时交、直流量并存, 所以一种分析方法是将其分离为直流通路和交流通路, 从而分别计算静态工作点和动态性能指标。在交流通路中,理想直流电压源要做短路处理。在文献[ 1] 中, 通过实验对这一问题进行了验证和阐述。但是笔者认为, 这种阐述方法并不全面。在此所述只是证明了理想直流电压源对交流信号没有影响, 但是并没有准确说明为什么要在交流通路中将直流电压源进行短路这一问题。在此针对这一问题, 从放大电路特性及分析方法出发, 进行了分析和讨论。

  1   放大电路转化为线性电路的前提

  在模拟电路中由于晶体管的非线性特性, 对放大电路通常采用2 种方法分析, 即图解法和等效电路分析法。

  其中图解法正是考虑晶体管的非线性而利用其输入和输出特性曲线, 通过直接作图的方法求解放大电路的静态工作点和动态性能指标, 这一方法可适用于小信号及大信号分析; 而等效电路分析法只适用于小信号的分析, 根据放大电路工作时交、直流量并存的特点, 从原电路中分离出直流通路和交流通路, 通过直流通路求解其静态工作点, 通过交流通路求解动态性能指标。等效电路分析法适用的范围应有以下2 个前提: 所放大的信号为小信号; 放大电路静态工作点是确定的。在这一前提下, 就可近似认为晶体管的特性曲线是线性的, 由此可导出放大器件的线性等效电路以及相应的微变等效参数, 从而将非线性的问题转化为线性问题。于是, 就可以利用电路分析理论中适用于线性电路的叠加定理来进行处理,在分离交流通路时, 理想直流电压源按短路进行处理, 从而对放大电路进行求解, 如动态性能指标中的电压放大倍数、放大电路输入电阻、输出电阻等。

  2   交流通路中直流电压源的短路处理

  放大电路如图1 所示, 该电路由一个直流电压源VCC 和一个小信号电压源us 构成激励源, 其中直流电压源VCC 作用的结果是给放大电路提供合适的静态偏置,而电压源us 是要进行放大处理的时变信号。在放大电路中对所有时间t , 满足| us ( t ) | < < VCC , 这就是说时变信号( 绝对值) 在所有时刻都远小于直流电压源电压us , 在这样的条件下, 可求出晶体管的h 参数微变等效电路, 这是一个线性电路。在这个模型中, 在确定的静态工作点下, 晶体管对于工作点而言, 表现为一线性元件。因此, 可依据线性电路的叠加特性进行分析计算。

  根据激励源的不同, 将其分解为直流通路和交流通路。

  直流通路是在直流电源作用下直流电流流经的通路, 交流通路是在输入信号作用下交流信号流经的通路。所以, 在分离直流通路时, 要去掉信号源的作用, 在保留其内阻的情况下, 电压源短路、电流源开路; 而在分离交流通路时, 要去掉直流电源的作用, 在保留其内阻的情况下, 将理想电压源短路。同时, 放大电路中的电抗元件对直流信号和交流信号呈现的阻抗是不同的, 所以要根据情况进行处理。根据以上分析, 得其放大电路的交流通路( 含晶体管h 参数微变等效电路) 如图2 所示。


 

图1   共发射极放大电路


 


图2   共发射极放大电路的h 参数微变等效电路

  图3 为两级直接耦合放大电路, 图4 为其小信号下的交流通路。从图中可看出, 在进行小信号交流通路分离时, 理想直流电压源VCC 按照上述方法处理, 在交流通路中被作短路处理, 二极管两端直流电压恒定, 也作短路处理, 但由于二极管在小信号情况下可等效为一动态电阻, 故保留了其动态内阻r d。 


 图3   两级直接耦合放大电路

 
图4  两级直接耦合放大电路交流通路

  3   几点讨论

  在此利用典型实例, 对交流通路中理想直流电压源相当于交流短路问题进行了分析。归纳以下几点:

  ( 1) 主要是一个方法问题。放大电路可进行直流通路和交流通路的分离是基于线性电路基础的, 如果晶体管特性不能线性化, 就不能使用这一方法进行分析;( 2) 晶体管的线性化是基于所要放大的信号是小信号, 若所要放大的信号是大信号, 就不能利用这一方法进行分析, 如功率放大电路;( 3) 由于是线性电路, 晶体管等效电路中各电阻不随电流、电压而变, 故各激励源单独作用时和同时作用时, 各电阻是不变的, 这正是利用叠加原理的依据。

  4   结  语

  理想直流电压源在交流通路中的短路处理, 是基于线性电路中激励源作用的叠加特性产生的处理方法。

  其前提是: 作为含非线性元件的放大电路只有在小信号及静态工作点确定的情况下, 才能转化为线性电路, 才能用叠加原理进行处理。这一分析和阐述, 在理论上,与前面提到的文献相比, 更加全面、准确, 有助于更好地理解这一问题。

关键字:交流通路  理想直流电压源  短路处理 编辑:冰封 引用地址:交流通路中理想直流电压源的短路处理

上一篇:Maxim±5V输出线性稳压器
下一篇:交流通路中理想直流电压源的短路处理

推荐阅读最新更新时间:2023-10-18 16:06

电机匝间短路的判定方法 电机匝间短路如何处理
  电机匝间短路的判定方法   观察和听取:运行中的电机产生异响或振动,可能是匝间短路的迹象。检查电机外观是否有烧焦、脱色等痕迹,也可能是匝间短路的表现。   电阻测试:使用万用表或绝缘电阻测试仪对电机线圈进行电阻测试。在不同的相位中测量电机线圈的电阻值,如果相邻相位中的电阻值不同,可能是由于匝间短路引起的。   激励电流测试:使用激励电流测试仪测量电机的激励电流,通过观察电机的激励电流波形和振幅变化,可以判断是否存在匝间短路。   热测试:运行电机一段时间后,观察电机线圈温度是否均匀或是否出现高温区域。高温区域可能是由于匝间短路造成的局部过载。   高压测试:使用高压测试仪对电机进行高压测试,测试电机的绝缘是否正常。如果测试
[嵌入式]
蓄电池内部短路处理办法
蓄电池内部发生短路故障时,将出现以下现象: (1)电解液比重比正常电池低,开路电压也比较低; (2)接入电路放电时,短路电池的电压下降迅速;若和其他正常电池相串联,短路电池的极板会出现深硫化现象,其正极板将由褐色变为棕黄色,而负极板则由浅灰色变为灰色。 (3)充电时冒气迟缓或不冒气,电解液温度高; 此时,应针对造成短路的原因采用不同的处理方法: (1)如果是由于蓄电池底部沉积物过多而造成的短路,应使蓄电池完全放电,然后倒出电解液,用纯水反复清洗之后再重新充电; (2)如果是由于极板弯曲而造成的短路,可以考虑在极板接触的地方加插隔离板; (3)如果是由于铅弹簧位移及极板和铅衬造成的短路,只需纠正弹簧的位置即可。
[电源管理]
蓄电池内部<font color='red'>短路</font>的<font color='red'>处理</font>办法
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved