但目前电力系统中运行的直流电源设备达到的技术指标,都是由生产厂家在设备出厂试验时提供的数据。现场检修维护人员因不具备相应的测试手段,难以确认设备的技术指标是否满足要求。而且运行实践证明,随着运行时间的推移,特别是投运1~3a内,设备的技术指标会发生偏移,典型的后果是因充电机指标下降,3个参数超标,同样因现场不具备相应的测试手段,无法及时发现、调整。所造成的后果就是蓄电池提前失效或损坏,直接威胁电网的安全运行。
特别是对于广泛采用的阀控密封铅酸蓄电池,虽具有不需加酸加水、维护量小的优点,但对于充电设备的3项指标具有严格的要求,如不满足要求则会发生干涸、热失控等故障,很快失效报废。如1999年,石家庄供电公司220kV大河站、王里站2组GFM-300Ah阀控密封铅酸蓄电池投运,因充电机技术指标不满足要求,仅运行了1a和3a即报废,对变电站乃至电网的安全运行造成了重大威胁。
另外,目前变电站多采用综合自动化技术,蓄电池采用柜式安装,与自动化设备同装一室,充电机性能出现问题会造成蓄电池发热、溢酸等问题,严重者甚至发生爆炸。
国内进行直流电源性能检测的机构以及生产厂家用于直流电源检测的设备均为固定式设备,如固定式调压器、负载箱,体积、重量大,无法移动、检测,分析仪器仪表均为常规设备如电压表、电流表、示波器等,接线复杂,使用不便,不适合在各变电站移动使用。
目前,对于直流电源的检测不具备调整交流输入电压设备,只能采用市电交流,因此不能检验交流输入电压变化情况下的3个参数,而充电机往往在输入交流电压变化时稳压,稳压精度不能满足要求;而且现场一般通过电炉丝调节充电机输出电压、电流,但输出容量往往过小,达不到规定范围。造成的后果就是现场人员不能按照规定进行全部测试点的检测,特别是一些易发现问题的极限点的检测,如交流输入电压+10%、输出空载情况下的稳压精度。本文介绍一种自行研制的、适合变电站使用的移动式直流电源微机检测系统。
该系统采用的检测方法严格按DL/T459-2000《电力系统直流电源柜定货技术条件》规定执行,实现对充电机3项指标的检测,避免由于检测方法的争议造成用户与生产厂商对检测结果的争议。
系统可实现的三相交流输入电压调整范围为380V±15%;检测数据精度≤0.5%,额定检测容量50A,可实现50A及以下容量充电机的检测,以及500A·h及以下蓄电池组容量试验。系统可自动检测;汉化液晶显示,可打印测试结果;且人机对话方便。
该系统在设计上采用模块化组合结构,2人即可搬动,方便车载运输及在各变电站移动检测。
系统由参数测试装置(系统主机)、交流电压调整装置、直流输出负载调整装置组成,见图1。采用微型计算机控制技术,通过调节被试充电机的交流输入电压及输出负载,同时系统主机自动进行采样计算,实现对充电机3项技术指标的检测。
由三相可调变压器及其控制系统组成。控制系统以辅助单片机为控制核心,接收系统主机指令,通过伺服电机控制三相可调变压器调节输出电压大校为降低体积与重量,从设计角度考虑,充分利用调整电压范围不大(20%)的特点进行了专门设计。
由发热元件及其控制系统组成。控制系统以辅助单片机为控制核心,接收主机指令,控制负载调整装置以控制充电机输出电压或电流的大校为降低体积与重量,发热元件采用PTC发热陶瓷元件,采用8421排列组合方式并配合可调电阻,实现对输出负载的准确调节。
该部分是整体设备的测量控制中心,它控制电动调压器以及负载调整装置,使充电机达到测试所需状态;测量被试充电机的有关输出量,并对结果实施分析计算,最终得出3个参数。
来自传感器的电压、电流信号经同相放大、有源滤波、模拟开关(4051)选择后,送至12位A/D转换器AD7109,转换后的数字量由数据总线送入89C52。由于A/D的时钟为工频整倍数,所以能抑制工频干扰。AD7109与89C52采用典型的总线扩展接法。
纹波电压信号经带通滤波、峰值保持等处理后到高速AD进行模数转换,转换后的数字量由数据总线送入89C52。
EEPROMX25045与89C52、P17~P14接口,构成工艺参量存贮器,通过软件控制,可将需要记忆的参量写入X25045,这些数据停电后仍可保持10a之久。
采用模拟开关CD4052扩展通讯口实现与辅机的交互式通讯。一路与触摸屏通讯,一路与三相输入交流电压调整装置通讯,一路与直流输出负载调整装置通讯。该通信方式为全双工异步串行通信,波特率为9600,每帧由1位起始位(0)、8位数据位(低位在先)、1位停止位(1)构成。
控制软件包括主程序、中断服务程序及若干子程序,全部软件约5K字节。主程序主要执行初始化程序,接受工作状态设置,进行键盘处理和刷新显示等功能。中断服务程序主要执行采样信号处理,包括浮点运算子程序、定点运算子程序、E2PROM读写子程序等若干子程序。其核心是采样信号处理,因为电压、电流的反馈信号是一切控制的基础,采样信号的稳定性和误差度直接影响着控制精度。在设计上通过启动A/D转换器进行连续多次采样,将采样结果累加起来,经抗干扰去极值处理后,除以有效采样次数,即得到稳定的采样信号。
2002年9月,石家庄供电公司检修工区某班组装备该套设备,首次应用于新投设备的交接验收工作中。结合某110kV变电站直流电源改造投运工作,检修人员将该套系统运至变电站,按照国家标准,对该站新装充电机进行3项指标的全自动检测,并对蓄电池组进行了容量试验。检测结果显示,#1充电机稳压精度低于国标规定,充电机生产厂方对充电机控制回路重新进行了调整,使指标达到了要求,保证了设备的投运质量。
该班组于2002年10月,首次实现对直流电源系统的现场检测,并将该项检测纳入定期维护工作内容,并先后进行了中华、大河等站充电机的3项指标测试,有效地保障了直流系统的安全可靠运行。
移动式直流电源设备微机检测系统成功地解决了直流电源的现场检测问题,可以定期验证和发现设备技术性能问题,杜绝事故隐患,便于变电站、发电厂直流电源设备进行现场整机技术性能的检测,确保电力系统的安全可靠运行。
上一篇:UPS电源对机房的意义所在
下一篇:LED电源和驱动电路主要技术概况
推荐阅读最新更新时间:2023-10-18 16:06
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况