基于FPGA 的谐波电压源离散域建模与仿真

最新更新时间:2011-12-02来源: 互联网关键字:FPGA  谐波电压源  离散域 手机看文章 扫描二维码
随时随地手机看文章

0 引言

近年来,由于电力电子装置等非线性负荷的大量增加,电力系统的谐波污染越来越严重,严重地影响了电能计量的准确性和合理性,由此导致的纠纷也屡见不鲜。因此,研究用于电能计量的谐波电压源装置,对电能计量有着非常重要的意义。

要求用于电能计量的谐波电压源能模拟21次内任意谐波的叠加,因此对采样频率要求较高。

目前,绝大多数谐波电压源装置采用开关功率放大器作为主电路,利用数字信号处理器(DigitalSignal Processing,DSP) 作为控制芯片。电力电子模型属于典型的高度并行模型,没有复杂的控制过程,但对采样率要求很高。开关器件的开关频率可达数百kHz,开关周期为μs 量级,实时系统要能稳定工作,其采样周期应小于开关周期的1 /10,DSP 则就有些显得力不从心了。

现场可编程门阵列(Field Programrnable GateArray,FPGA)采样率很高,适用于高速度要求的并行运算,运算过程简单。采用FPGA 执行运算,不仅能提高采样精度,还能节约成本。近年来,随着技术进步及市场需求量的增加,FPGA 产品单位货币所买到的MAC(乘法/累加运算)数比传统的DSP 还要高。200 万门FPGA 可达到1 280 亿/s MAC 的性能,比目前最快的DSP 性能还高一个量级,有取代DSP 之势。因此,将FPGA应用于谐波电压源的研究中,不失为一种好的思路。

VHS-ADC 是基于Matlab /Simulink 和FPGA的高速数字信号处理平台,采用Virtex-Ⅱ系列FPGA,内部拥有丰富的门资源与硬件乘法器,工作频率可达420 MHz,高速A/D 通道采样率可达105 MS /s,高速D/A 通道采样率可达125 MS /s。VHS-ADC 实现了与Simulink 的无缝连接。

本文在分析系统原理和设计系统参数基础上,在Simulink 中搭建了谐波电压源的连续域模型,并将其离散化,基于VHS-ADC 平台搭建了离散域仿真模型。

1 主电路结构和控制策略

1. 1 谐波电压源的主电路结构

谐波电压源装置可模拟电网的各种现场情况,每相的谐波含量各不相同,因此主电路逆变部分采用3 个单相H 桥,每个单相H 桥由4 个开关管IGBT 组成。谐波电压源装置的主电路图如图1 所示。其中,每个H 桥可以等效为一个可控电压源,为系统提供频率、幅值、相位可调的谐波电压。逆变部分由4 个开关管IGBT 组成,逆变部分的直流侧电压由整流部分提供。整流部分由降压变压器和三相不可控整流电路组成,三相市电由降压变压器降压隔离,再经三相不可控整流,得到逆变电路所需的稳定直流电压。出口处的电感电容构成单调滤波器,用于滤除载波和高次谐波。

图1 谐波电压源装置主电路。

1. 2 谐波电压源的控制策略

双闭环PI 调节的控制器简单,具有一定的鲁棒性,在工程控制领域得以广泛应用。因此,本文采用基于SPWM 的双闭环PI 控制策略,双闭环PI 控制的原理框图如图2 所示。图2 中,外环电压以理想的正弦波作为参考电压,输出电压与参考电压比较后经PI 调节作为电流内环的参考值,该电流参考值与反馈电流比较,再经PI 调节后与PWM 控制器中的三角波比较,产生PWM 信号驱动逆变器。

图2 电压、电流双闭环PI 控制原理框图。

本文引入负载电压瞬时值和滤波电容电流瞬时值作为反馈信号,根据实际值和期望值的偏差来实时控制输出电压波形,保证输出电压波形的精度,消除各种非正弦因素和扰动对输出电压的影响。由于输出滤波电容电流是对逆变器输出电压的微分,十分微小的电压变化即可引起电容电流的较大波动。因此,电容电流的引入更能使系统得到良好的动态性能。

2 基于VHS-ADC 平台的系统建模

基于FPGA 的VHS-ADC 高速信号处理平台,其模型库具有丰富的数字信号处理模型,Simulink自带的模型库不能编译成FPGA 代码,而Xilink模型库是基于离散信号z 域的模型。因此,需要构建z 域电力电子仿真模型。

基于z 域的控制电路VHS-ADC 模型如图3所示。该模型主要由PWM 发生器、PI 控制模块、限幅模块和死区模块组成。三角波用Counter 计数器产生。图3 中的Gateway in 为数据转化模块,将s 域信号转化为z 域信号。

图3 控制电路VHS-ADC 模型。

电压外环PI 环节可表示为:

式中u(t)———控制量

e(t)———系统的控制偏差

Ti———积分时间

Kp———比例系数

为了搭建离散域模型,在近似条件下得离散化方程为:

式中T———采样周期

k———采样序号,k = 1,2,…

e(k)———PI 环节的输入信号

Ki = Kp /Ti———积分系数

将式(2) 与uk - 1的表达式进行比较,则可得到第k 次采样时刻的离散方程:

根据PI 的离散方程,可构建VHS-ADC 模型。

以电压外环PI 为例,其模型如图4 所示。CMult为乘法器模块,大小等于采样时间T;Convert 为数据转化模块,将输入信号转化为合理的数据格式。数据格式由数据位数和小数位数确定,在保证仿真精度的前提下,尽量减小数据位数,节约硬件资源。

图4 电压外环PI 模型。

利用3 个加法器和1 个减法器,可实现限幅环节。减法器运算结果为负时,输出为0;运算结果为正时,输出为正常值。Constant1 和Constant2分别设置限幅模块的上、下限,限幅环节的模型如图5 所示。

图5 限幅环节模型。

利用延迟模块和逻辑模块,可设置逆变器死区时间。输入信号经过Delay 模块,被延迟4 个采样周期时间,再与原信号进行逻辑与运算,就可得到带有死区时间的PWM 信号,被Delay 模块延迟的时间就是设置的死区时间。死区时间模型如图6 所示。


图6 死区时间的VHS-ADC 模型。

依靠平台提供的co-simulink 接口,将搭建的离散域控制模型进行编译,并自动生成代码,下载到FPGA,生成一个bit 流文件,将含有bit 文件的协议同仿真模块与谐波电压源的主电路连接。当在Simulink 中进行仿真时,FPGA 上的实时运算结果返回到Simulink 环境中,提高了仿真速度。

3 仿真结果

利用Matlab /Simulink 软件和VHS-ADC 仿真平台,建立完整的谐波电压源仿真模型。仿真参数:输入电压为Uu = Uv = Uw = 220 V;滤波电感L = 0. 05 mH,滤波电容C = 100 μF。电压环PI 参数:比例系数Kp = 13,Ki = 0. 4;电流环PI 参数:比例系数Kp = 15,Ki = 0. 2,负载R = 30 Ω;采样时间为100 ns,单相额定输出功率为3 kVA。

稳态下,谐波电压源输出的单相基波波形如图7 所示。因为三相不可控整流提供的直流电压需要约0. 01 s 才能达到稳定,所以谐波电压源输出波形在0. 01 s 之前是逐渐增大的,当直流电压稳定后,仿真波形几乎与期望波形重合。

为了验证装置的谐波合成能力,将30 V 4 次谐波叠加到100 V 基波上,如图8 所示。叠加后的波形在0. 01 s 前逐渐增大,在0. 01 s 后几乎与期望波形重叠;将所得波形进行傅里叶分析,4 次谐波含量为基波的30%,其频谱分析图如图9 所示。

图7 基波输出波形与期望波形的对比。

图8 叠加信号输出波形与期望波形的对比。

图9 叠加波形的频谱图。

表1 为输出波形为单次谐波时,总谐波畸变率(THD)的大小。仿真结果表明,谐波电压源输出21 次内的单次谐波时,其THD 不会超过1%。

上述仿真结果说明了谐波电压源输出波形具有很高的精度,同时也验证了谐波电压源离散域模型的正确性。

表1 谐波电压源输出单次谐波时的畸变率。

4 结语

分析了谐波电压源的主电路模型,探讨了基于滤波电容电流和负载电压瞬时值的双闭环PI控制策略,利用VHS-ADC 数字信号处理系统采样率高、实时性强、建模灵活等特点,构建离散域实时仿真控制模型。仿真结果表明,该设计方法和离散化模型是正确的,说明了基于FPGA 进行谐波电压源研究的可行性。

关键字:FPGA  谐波电压源  离散域 编辑:冰封 引用地址:基于FPGA 的谐波电压源离散域建模与仿真

上一篇:NTC PTC压敏电阻在电源电路中的作用
下一篇:基于ARM与PID算法的开关电源控制系统

推荐阅读最新更新时间:2023-10-18 16:10

四倍速SRAM与Spartan3 FPGA的接口设计
互联网的飞速发展极大地促进了高速数据通信系统的需求量增加,同时也促进了更快速的处理器的发展,推动了存储器接口速度的提高。由于这些系统中的处理器提高了系统的性能,使得传统的静态存储器已经不能满足系统的需求。为了满足当前系统和处理器的生产量需求,更新的静态存储器应运而生。QDR SRAM就是由Cypress、Renesas、IDT、NEC和Samsung为高性能的网络系统应用而共同开发的一种具有创新体系结构的同步静态存储器。    1 QDR SRAM的介绍及其性能描述   1.1 QDR的先进性   现有的大部分SRAM都是在PC时期针对高效传输PC型单精度输入输出数据而设计的。在大多数的网络应用中,SRAM和记忆
[嵌入式]
四倍速SRAM与Spartan3 <font color='red'>FPGA</font>的接口设计
基于FPGA控制VGA显示的多通道数字示波器的设计
摘要:为了实现对0~1 MHz的信号进行测量以及显示的目的,制作了基于SOPC技术的VGA显示数字存储示波器。采用硬件与软件相配合的设计方法,主要模块有基于FPGA的最小系统模块、信号调理电路模块、AD采样模块、触发电路模块、VGA显示模块、4×4矩阵键盘模块和RAM存储以及FLASH存储模块。具有模拟信号可进行任意电平触发、数字信号可使用上升沿和下降沿触发、存储回放、垂直灵敏度档位设置、扫描速度档位设置、VGA显示多个界面等特点。通过波形测量实验,得到较好的显示波形。 关键词:FPGA;数字示波器;A/D采样;VGA显示 随着信息技术的发展,对信号的测量技术要求越来越高,示波器的使用越来越广泛。模拟示波器使用前需要进行
[嵌入式]
基于<font color='red'>FPGA</font>控制VGA显示的多通道数字示波器的设计
基于FPGA的微处理器内核设计与实现
与传统投片实现ASIC相比,FPGA具有实现速度快、风险小、可编程、可随时更改升级等一系列优点,因而得到了越米越广泛的应用。MCS-51应用时间长、范围广,相关的软硬件资源丰富,因而往往在FPGA应用中嵌人MCS-51内核作为微控制器。但是传统MCS-51的指令效率太低,每个机器周期高达12时钟周期,因此必须对内核加以改进,提高指令执行速度和效率,才能更好地满足FPGA的应用。 通过对传统MCS-51单片机指令时序和体系结构的分析,使用VHDL语言采用自顶向下的设计方法重新设计了一个高效的微控制器内核。改进了的体系结构,可以兼容MCS-51所有指令,每个机器周期只需1个时钟周期,同时增加了硬件看门狗和软件复位功能,提高了指令执行
[嵌入式]
一种基于FPGA的高速误码测试仪的设计
误码分析仪作为数字通信系统验收、维护和故障查询的理想工具,广泛应用于同轴电缆、光纤、卫星及局间中继等符合CEPT(European Confence of Postal and Telecommunications Administrations)数字系列通信系统传输质量的监测。评价一个通信系统的可靠性的指标就是检测该通信系统在数据传输过程中误码率的大小,本文设计的高速信号误码测试仪,用于对EPON中接收和发送突发光信号的接收模块的可靠性进行检测。目前误码分析仪的工作模式已发展到如下4种:分析仪模式、发生器模式、分析仪/发生器模式、直通模式。本设计中的误码测试仪属于第3种类型,即该误码测试仪可以产生测试的码流,又可以进行误码测试。
[测试测量]
一种基于<font color='red'>FPGA</font>的高速误码测试仪的设计
Ittiam Systems选用Stratix II FPGA
  数字信号处理系统领先供应商在高清晰电视、DVD和机顶盒芯片中选用了Altera的高性能FPGA器件   2007年3月6号,北京 ——Altera公司今天宣布,印度班加洛尔的数字信号处理(DSP)系统公司Ittiam Systems( www.ittiam.com )选用了业界领先的Stratix II FPGA系列来开发和实现Trinity多格式高清晰视频解码器(MFVDEC)软核知识产权(IP)。该IP内核设计用于数字电视、高清晰(HD) DVD、HD IPTV和HD机顶盒解决方案。Ittiam之所以选择了Altera的Stratix II FPGA系列,在于其大容量、高性能以及优异的信号完整性。   It
[焦点新闻]
MPS可扩展模块一让大电流设计更加简洁
如今,由于FPGAs和ASIC的快速普及,也给电源模块设计带来了一定的挑战一一应用需要更宽的无线网络带宽来驱动,而数据中心则需要更高的功率密度、更快的负载瞬态响应和更智能的功率管理功能。因此,理想的电源模块解决方案需变得更加紧凑、人性化可定制、易于使用,同时功率传输能力绝不可输于传统设计。 MPS的这款产品MPM3695-25便是理想中电源模块解决方案的完美代表。MPM3695-25作为—款业界领先的可扩展模块,可提供高达250A峰值电流、200A持续电流和低至0.5V的输出电压(见图一)。相比于分立负载点(POL)电源解决方案,MPM3695-25能提供更高的功率密度(高达60%),可为多个器件提供核心电源。MPM3695-
[电源管理]
MPS可扩展模块一让大电流设计更加简洁
基于FPGA和USB2.0的高精度数据采集系统设计
  现代电子侦查技术要求能够对外部模拟信号进行精确提取和分析,从而对数据采集的精度提出了很高的要求,本文提出了一种以FPGA 作为主控制器的高精度500M 数据采集系统设计方法,详细地阐述了各硬件平台的具体构成。最后利用QUARTUS 内部的嵌入式逻辑分析仪(SignalTap ii)可以观察到被采集到的信号并且对数据的有效位数及性能进行简略分析。   0 引言   随着数字通信技术的逐步发展,高速数据采集系统已经逐步取代传统的数据采集系统,其广泛应用在众多场合。新一代 可编程逻辑 器件FPGA 都拥有较多的IO 端口以及强大的数据处理能力,这也为高速高精度数据采集系统的研发提供了基础条件。   1 工作原理   本
[嵌入式]
莱迪思推出业界首款集成USB的小型嵌入式视觉FPGA
— 业界首款拥有硬核USB的人工智能&嵌入式视觉应用FPGA,拓展小型、低功耗FPGA产品系列 — 中国上海——2023年9月27日—— 莱迪思半导体公司,低功耗可编程器件的领先供应商,今日宣布推出莱迪思CrossLinkU™-NX FPGA产品系列,这是业界首款同级产品中集成USB器件功能的FPGA。 CrossLinkU-NX FPGA通过硬核USB控制器和物理层(PHY)、独特的低功耗待机模式和一整套参考设计,加速设计配备了USB的系统并简化散热管理。CrossLinkU-NX FPGA拓展了莱迪思在嵌入式视觉传感器与USB主机接口领域的领先地位,旨在满足不断增长的客户需求,简化计算、工业、汽车和消费电子市场应用中
[嵌入式]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved