嵌入式系统的能耗动态管理方案

最新更新时间:2011-12-24来源: chinaaet关键字:嵌入式  能耗  动态管理 手机看文章 扫描二维码
随时随地手机看文章

  一直以来,嵌入式处理器的低功耗是通过使用一些低功耗的空闲或睡眠模式来实现的。现在,嵌入式处理器要承担更复杂的工作,需要更高的性能。新的应用程序(如音频和视频播放以及游戏等)一般运行时间都相当长,“运行时间”与“空闲时间”之比也上升得很快。传统的电源管理技术在空闲时间中是非常有效的,但要在运行中节省电池能量就无能为力了。

  此外,电源管理芯片制造商仅仅把注意力集中在供电的管理方面。情况一般是这样的,嵌入式处理器供应商给出输入/输出功率要求,功率半导体供应商则争相开发出尽可能高效的满足要求的 IC。然而,现在象开关稳压器这样的电源管理 IC 效率已经达到了 95% 的高峰。这迫使今天的电源 IC 供应商不仅要在价格上竞争,还要靠效率的每一点细微增长进行竞争。当前手机市场的发展趋势显示,这些传统的方法已无法满足业界对提升效率的需求。

  尽管电池技术一直有稳定改进,如更长的寿命及更小的体积,但这种发展仍然无法赶上下一代设计快速增长的功率需求。要在新产品中将电池寿命延长到最终用户可以接受的水平,普通的电源管理方法已经不能胜任了。

  工艺技术的发展趋势也加剧了电源管理的复杂性。过去,CMOS 晶体管在静态时消耗功率很少,几乎可以忽略不计。然而,随着速度和密度的增加,工艺尺寸在不断缩小,静态功耗也在增长。根据估计,对于用 0.13 微米高速工艺实现的芯片,其静态功耗要占总功耗的 15-20%。而且,随着工艺技术进入 100 纳米以下,静态功耗将呈现指数式的增长,并将在处理器总功耗中占据主要部分。

  有一种方法可以协调高性能与低功耗之间的矛盾,这就是让处理器根据当前的工作负载,运行在不同的性能等级上。举例来说,一个 MPEG 视频播放器需要的处理性能比 MP3 音频播放器高一个数量级。因此,当播放 MP3 时,处理器可以运行在较低频率上,而仍然能保证播放的高质量。当时钟频率降低时,可以同时降低处理器的供电电压,以达到节能的目的。

  动态电压调整技术 (DVS) 就利用了这样一个事实,即 CMOS 工艺处理器的峰值频率与供电电压成正比。图 1 显示了频率与电压的关系,其中的测试使用了一个 ARM926EJ-S 处理器内核(0.18 微米工艺)。可以看到转折点在大约 90 MHz,这是调整技术适用电压范围的一个限额。

  以下是一个 CMOS 电路的近似功率方程:

  P = CVDD 2fc + VDDIQ其中:

  · P 为供电电压 VDD 消耗的功率。

  · C(VDD)2fc 是源于切换的动态功耗部分(C 是电容,fc 为频率)。

  · VDDIQ 是源于泄漏的静态功耗部分(IQ 为泄漏电流)显然,对一个给定负载,动态功率的量值与供电电压的平方成正比。

 

  

 

  减少供电电压并同时降低处理器的时钟速度,功耗将会呈二次方的速度下降,代价是增加了运行时间。由于每次电池充电后其中储存的能量是有限的,所以能量管理技术是唯一一种可以扩展电池使用寿命的方法。图 2 显示的是当频率与电压都从最高值下调时,等效的节能情况。因为电压的下降不可能超过某一个最低限,所以即使把频率降低到曲度以下也不能产生更多的节能效果。因此,能量管理技术也存在一个适用频率范围,在这个范围内的电压升降才是有效的(本例中约为 90-170 MHz)。

 

  

  图2 计算出ARM926EJ-S处理器节能与频率关系图

 

  电压控制和频率控制的要求图 3 比较了两种电源管理方法的效果,一种使用动态电压调整法(DVS),另一种是普通的门控电源管理方法。DVS 方法能显著降低整体功耗。

 

  

 

  一般来说,处理器运行得都太快了。例如,从 QoS 观点来看,如果软件只需要在一秒钟内显示完 30 帧视频图像,则处理器在半秒内就完成所有解码是没有意义的。提前完成任务的做法使能量利用效率较低。

  取得性能与节能平衡的关键在于使用智能软件,它可以把处理器的性能降低到正好满足应用软件需求底线的水平。这种软件应该包括“性能设定”算法,由该算法来确定处理器运行的最佳性能级别,并且管理象 DVS 这样的性能调整技术。

  现有的 DVS 系统使用的是开环控制技术,CPU 的特性是通过给定时钟速度和电压下的工作量来确定的,并留有足够的余量来适应温度、供电和晶圆工艺的变化。

  嵌入式处理器被设计成能在宽广的温度范围内工作和适应不同的硅工艺。因此,必须采用较高的安全裕度,才能在电源效率降低时确保足够的安全工作范围。随着供电电压逐步转向 1.2V 或更低,所需安全裕度的百分比也随之增加,以覆盖温度及硅片工艺的各种变化。

  CMOS 电路的速度会随温度的升高而减慢,这一效应必须算到供电电压安全裕度里,虽然一般的工作温度都是室温。由于工艺技术的变数很多,如不同内核、不同晶圆、不同批量甚至不同代工厂都各不相同。为了保证高的产量,这些保护带(guard-b ands)可以相当宽,从而对总体功耗有显著的影响。

  可以用大量的特性来构建一个频率与电压对照表,以确保在所有工作条件下都能满足性能要求。然后把一个确定的电压/速度集合以硬编码方式写到芯片中。在实际工作中,SoC 上定制的软件驱动通过一个专门的硬件接口来设定所需电压级别。在改变时钟频率前,必须通过一个定时器或其它方法来检查稳定电压状态(VDD_OK)。

  自适应电压调整(AVS)方法是一种闭环控制技术,它比 DVS 有明显的改进。AVS 采用固有的对工艺与温度变化的补偿,简化了电压调整的方法,不再需要频率/电压表。这种技术的实现需要与嵌入式处理器协同使用几个硬件性能监控器,由它们接收从性能设定算法送来的更改性能级别的请求。这些性能监控器可以准确地监控内核内外的工艺与温度变化情况,并且通过标准接口与外部的能量管理单元(EMU)进行通信。

  ARM国家半导体能量管理解决方案ARM公司一直在研究一种对性能调整硬件进行智能控制的解决方案。美国国家半导体公司则一直在研究一种智能控制供电电压、简化 DVS 方法以及通过 AVS 减小安全裕度的解决方案。两家公司现在已经可以给电池供电设备的开发商提供一种端到端的方案。

  ARM 公司的 Intelligent Energy Manager(智能能量管理器,IEM)解决方案以一个软件部件为中心,即 Intelligent Energy Management 软件。IEM 软件与运行在应用软件下的操作系统(OS)相互衔接,使用从 OS 内部架构获得的参数,通过正在运行的应用程序“指导” OS 的使用。可以用一些复杂的软件算法来评价不同类型的软件活动,然后产生一个对未来性能的预测。每个预测结果用一个评测栈来加总,以确定出一个总体的性能预测。

  策略栈的工作情况显示在图 4 中。每个算法都把自己的预测作为一种性能级别 (PeRF.)送进栈中,每个预测都有一个相关的指令指出当前预测的权重,如果信任水平为低则 IGNORE(放弃该预测),如果为高则 SET(指定该预测),SET_IFGT 表示如果该预测的信任水平在栈中为最高,则应该使用该水平。当系统中发生某特殊事件时,例如一次任务切换,则要从栈底开始向上重新对不同的预测进行评估,以导出一个唯一的总体性能预测。

 

  

 

  与 IEM 软件一起联合工作的是 Intelligent Energy Controller(智能能量控制器,IEC)部件。IEC 是一个 APB 外设,它可以快速地集成到任何基于 AMBA 规范的 SoC 设计中。IEC 使用精密计数器和定时器测出当前的系统性能水平,并将其送给软件,以确保处理器的性能永远能够满足软件工作负荷的最低要求。它还将大部分软件测量活动下载给硬件,从而减少了处理器上 IEM 软件的开销。

  IEC 部件还提供一个对性能调整硬件的抽象。从软件的角度看,当工作负载变化而且预测被修改时,才向 IEC 提交一个新的性能级别请求。这种性能级别的实现则用抽象方法对软件进行隐藏。ARM 的 IEM 软件部件优化功耗的性能设定算法是基于工作负荷的差异,与之类似,国家半导体的PowerWise 技术也根据当时的环境状况以及各器件间的工艺差异,通过调整运行参数来确保处理器不会在最差的情况下工作。

  国家半导体用于自适应电压调整或动态电压调整的 PowerWise 技术的核心是一个低门数、综合的数字部件,名叫 Adaptive Power CONtroller(自适应功率控制器,APC)。APC 包括硬件性能监控器,它可以准确地监控处理器的功耗,跟踪温度以及不同器件工艺的变化。APC 与片外能量管理单元(EMU)的通信通过一个双线、双向总线进行,这个总线叫 PowerWise 接口(PWI)。

  图 5 显示了完整的端到端参考解决方案,它使用了 ARM 公司的 IEM 和 IEC 部件,以及国家半导体公司的 APC 和 EMU 部件。

 

  

 

  由 ARM 的 IEM 预测出的总体性能级别通过 IEM 硬件部分的抽象层传送给 APC。APC 自适应地调整供电电压,以覆盖内核工艺和当时的运行条件,满足特定的性能要求。

  在设计时 IEC 可以配置为连接到片上特别设计的时钟管理单元(CMU)和 APC 部件。CMU 负责为处理器提供与所需性能级别相适应的时钟频率。APC 负责管理片外 EMU,为处理器内核提供能满足所需性能级别的最低电压,同时还要考虑当前内核工艺与温度状况。由 IEC 部件来协调管理时钟频率与电压的变化,以保证任何时候两者的组合都是有效的,并且不同性能级别之间的转换要顺利,而且在时钟产生方案与外部 EMU 的限制下转换要尽可能快。

  能量管理的最大限度ARM 与国家半导体开发出了这些先进的能量管理解决方案,可 以协助 OEM 厂商实现他们的手持式电池供电产品的电池寿命最大化(电池寿命现在是最终用户真正关心的几个关键要素之一)。整个解决方案具有部件化的特性,这意味着该技术可以自我调整去适应各种性能调整硬件,包括 DVS 和 AVS。IEM 预测软件决定了处理器可以运行的最低性能级别,同时通过 IEC 的帮助,也确保永远不会低于软件的最低界线。APC 用性能预测与外部 EMU 一起工作,使处理器运行在能保证应用软件正确运行的最低电压和频率下。在已确定时钟发生器、供电电压动态范围,以及混合应用软件可用余量等限制条件下,这一完整的解决方案能将处理器的功耗降低到最低程度。

  ARM 智能能量管理技术可以用于降低一个嵌入式处理器的能量需求,最高可达75%。国家半导体公司的 PowerWise 技术可以减小安全裕度,并进一步减少能耗,与开环电压控制方案相比,在室温下使用 AVS 可以再节省 45% 的能耗。通过模拟工作与测试芯片显示,结合使用 IEM 和 PowerWise 技术可以把智能手机和 PDA 这类产品的总能耗降低 30%,这对增加电池寿命有相当大的好处,同时还可以减小产品体积或降低成本。

  正如前面所说,在一个典型设计中,处理器只是许多耗能部件中的一个。当 IEM 和 PowerWise 技术进入实用时,预计它们将被用于在一片 SoC 中,用于控制其它器件。

关键字:嵌入式  能耗  动态管理 编辑:探路者 引用地址:嵌入式系统的能耗动态管理方案

上一篇:SoC 设计中的时钟低功耗技术
下一篇:为便携式设备可靠供电开发拓宽USB功能

推荐阅读最新更新时间:2023-10-18 16:16

国产嵌入式存储器厂商合肥康芯威完成近2亿元融资
近年来,集成电路产业充分依托国家产业战略和市场广阔需求,呈现蓬勃向上的发展态势,IC设计领域作为集成电路产业重要的细分环节之一也显现出前所未有的活力,中国半导体行业协会的统计数据显示,截至2021年12月21日,中国大陆共有2810家IC设计企业,而这一数字在2015年底仅为736。 在众多IC设计企业中如何才能脱颖而出?这是各个企业自成立之初便需要深思的课题。对于国产嵌入式存储器厂商而言同样如此,拥有独特的技术、打造差异化创新是致胜市场的关键,更是俘获资本青睐的根本。 近日,合肥康芯威存储技术有限公司(以下简称“康芯威”)宣布完成总金额近2亿元的A轮融资,上海威固、广州科学城、熙城致远、国元基金、中信新未来等产业公司与专业投资者
[手机便携]
国产<font color='red'>嵌入式</font>存储器厂商合肥康芯威完成近2亿元融资
德州仪器推出最新可保护客户代码嵌入式处理器
DSP 与 DSP + ARM 处理器上的安全启动与多层加密功能可杜绝软件盗版、保护客户投资 2011 年 6 月 16 日,北京讯。日前,德州仪器 (TI) 宣布推出 TMS320C6748 数字信号处理器 (DSP) 与OMAP-L138 DSP + ARM® 处理器,可为客户知识产权 (IP) 与敏感数据提供全面的安全保护,防止其遭到非法读取。这两款处理器,都属于TI 的C6000™  DSP 和C6-Integra™ DSP+ARM产品些列。这两款处理器具有两项保护功能,分别是: • 安全启动功能:可避免外部人员修改客户开发算法,严防恶意软件植入、逆向工程以及系统克隆,从而可杜绝非法用户滥用客户系统与操作; • 多
[嵌入式]
嵌入式系统设计方法的演化—从单片机到单片系统
摘要:在介绍嵌入式系统设计方法变化背景的基础上,综述嵌入式系统设计方法的不同层次,从单片 机应用到单片系统设计的演化,并提出了发展战略。 关键词:嵌入式系统 设计 单片系统(SOC) 硬件描述语言(HDL) IP内核 一、嵌入式系统设计方法变化的背景 嵌入式系统设计方法的演化总的来说是因为应用需求的牵引和IT技术的推动。 1.随着微电子技术的不断创新和发展,大规模集成电路的集成度和工艺水平不断提高。硅材料与人类智慧的结合,生产出大批量的低成本、高可靠性和高精度的微电子结构模块,推动了一个全新的技术领域和产业的发展。在此基础上发展起来的器件可编程思想和微处理(器)技术可以用软件来改变和实现硬件的功能。微处理器和各种可编程大规
[应用]
基于MB86R01的ARM嵌入式汽车数字化虚拟仪表
  文中主要介绍了富士通的系统LSI芯片MB86R01的工作机制,以及集成在单芯片上的ARM926EJ-S核心,图像显示控制器(GDC),车载通信功能,各种媒体接口的功能特点。该芯片可处理来自汽车导航器件或数字仪表板的数据和车载网络的信息,以提高驾驶环境的舒适性,同时实现高质量的图像和视频显示。   随着汽车、通信、信息电器、医疗、军事等行业的巨大的智能化需要,嵌入式软件及系统发展迅速。微处理器从8位到16位、32位甚至64位,从支持单一品种的CPU芯片到支持多品种的,从单一内核到除了内核外还提供其它功能模块。而且随着硬件技术的不断革新,硬件平台的处理能力不断增强,成本不断下降,嵌入式软件已成为产品的数字化改造、智能化增值的关
[嵌入式]
PC机与嵌入式系统的多线程串行通信实现
   1、引言   目前,先进的嵌入式计算机以其优良的品质、高可靠性及模块化,广泛地应用于工业控制、航空航天、医疗、智能仪表、通信、数控、自动化生产设备、数据采集等领域。在实际应用中,有时需要借助微机强大的数据处理能力和丰富的软件资源,使得组成的系统功能更为强大。这样,为了提升系统的整体性能,必须实现PC机和嵌入式计算机之间的通信。在导航仪生产管理中,由于串行通信具有连接简单、使用灵活方便、数据传递可靠等优点,采用串行通信方式进行数据下载。但由于Windows 95/98对系统底层操作采取了屏蔽的策略,不允许用户对硬件I/O口进行直接操作,进行串行通信只能通过调用API函数来完成;同时Windows 9x通过消息队列驱动管理程
[嵌入式]
嵌入式系统的动态电源管理架构
摘要:分析嵌入式系统对动态电源管理的需求,并在此基础上提出了与之适应的,以策略框架为中心的系统级动态电源管理架构。利用这种构架可以整合针对不同组件的动态电源管理算法和机制,从系统角度进行行之有效的管理。该架构应用于TD-SCDMA无线终端上,平均能耗下降了50%,取得良好的效果。 关键词:动态电源管理(DPM) 功率监控 实时嵌入式操作系统 1 简介 随着系统集成技术和无线通信技术的快速发展,嵌入式系统的应用日趋网络化。尤其是无线通信系统中,人们对嵌入式设备提出了更高的要求:除了提供基本的语音、数据通信等基本功能外,还需要事例复杂的多媒体应用。这就要求嵌入式系统在满足必要的实时性前提下,提供更高的计算性能和大容量的存储空间
[应用]
构造一个51单片机的实时操作系统
目前,大多数的产品开发是在基于一些小容量的单片机上进行的。51系列单片机,是我国目前使用最多的单片机系列之一,有非常广大的应用环境与前景,多年来的资源积累,使51系列单片机仍是许多开发者的首选。针对这种情况,近几年涌现出许多基于51内核的扩展芯片,功能越来越齐全,速度越来越快,也从一个侧面说明了51系列单片机在国内的生命力。 多年来我们一直想找一个合适的实时操作系统,作为自己的开发基础。根据开发需求,整合一些常用的嵌入式构件,以节约开发时间,尽最大可能地减少开发工作量;另外,要求这个实时操作系统能非常容易地嵌入到小容量的芯片中。毕竟,大系统是少数的,而小应用是多数而广泛的。显而易见,μC/OS—II是不太适合于以上要求的,而Keil
[单片机]
嵌入式uClinux应用程序的NFS开发
在目标机上可以运行uClinux了,接着就需要开发完成特定任务的应用程序了。由于嵌入式uClinux的特殊开发环境(主机——目标机),其应用程序的开发模式也有多种。 一种是在主机上编写程序,然后编译、连接、调试,成功后将程序和内核一同编译并下载到目标板。这种模式中不利于开发的问题有:主机和目标机的运行环境(如指令集,函数库等)不同。另一种是通过网线或串口线将目标机和主机连起来,直接在目标机上开发调试。这种模式使用NFS将主机的特定目录mount到目标机上,对主机的操作就是对目标机的操作。采用 NFS模式可以方便应用程序的开发,减少映像文件的下载次数和对flash的烧写次数。这对于缩短开发周期,提高开发效率,加快产品的上市时间相当重要
[嵌入式]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved