本文通过传统绕线和PCB迭绕两种工艺的比较,并采用谐振法测得谐振频率及通过计算得到分布电容,最后以实测波形说明分布电容对电路性能的影响。
1 分布电容产生机理
在高压变压器中,分布电容由匝间分布电容和层间分布电容构成。任何两匝线圈间都存在分布电容。将“平板电容器的电容量与极板面积成正比,与极板间距成反比”表达成只有相邻两匝线圈时单位长度分布电容表达式为:
其中,C为单位长度分布电容值;ε为两线圈间介质的介电常数;s为长为单位长度、宽为线径的等效对立面积;d为两线圈中心间距。为减小两线间分布电容,减小ε和s,增加d。
2 传统绕制线包和PCB线圈的比较
为方便比较,两种工艺绕制的变压器均采用如下相同参数:
工作模式:全桥拓扑;工作频率:150 kHz;输入电压/电流:50 V/3A;初级匝数Np:4匝;8个输出次级匝数Ns1~Ns8:68匝,68匝,68匝,68匝,62匝,62匝,62匝,62匝;次级线径/线宽:0.2mm;磁芯:PQ40;绝缘等级:初级和次级及次级和磁芯间耐压大于8kV DC;绝缘处理:均采用0.05 mm厚的聚酯薄膜胶纸。
2.1 线包绕制工艺
高压变压器的线包绕制工艺如下:
(1)采用直径为16 mm的圆柱型绕线骨架,所有绕线距骨架的上下都应有4mm以上留边距离;
(2)初级采用宽6 mm×厚0.05 mm的铜箔,次级均采用线径为0.2 mm的漆包线,绕完初级后依次绕次级,所有次级均一层内绕完;
(3)初级/磁芯中柱间绝缘要求的聚酯薄膜为24 mm×0.05 mm×2层,初/次级组间、次级组间及Ns8次级与外磁芯绝缘要求的聚酯薄膜为24 mm×0.05 mm×6层;
(4)所有次级要一层绕完,初次级出线端头应伸出50 mm左右;
(5)初级出线和次级出线分别绕中柱两边,Ns1~Ns4出线和Ns5~Ns8出线分别位于磁芯一边中的上下部位。
图1所示为传统方法绕制的线包实物图。
2.2 PCB线圈绘制
线宽采用0.2 mm,线间距为0.3 mm;由于PQ40磁芯窗口宽度为11 mm,在预留足够绝缘空间的情况下PCB每层最多布置17匝线圈,这样每个次级绕组均需4层。如果全部初次级印制在同一块PCB板中,就有(4层×8+2层)34层,这样不仅成本太高,而且体现不出多层PCB板“薄”的优势,所以,PCB板采用单层双面聚四氟乙烯板,厚0.5 mm,且双面迭绕线圈,每组次级线圈均需两块PCB板。采用DXP2004软件绘制的PCB线圈图如图2所示。限于篇幅,图2中只示出Ns1中一块PCB板的正背面。
2.3 分布电容大小的确定
从变压器初级视入,分布电容和初级电感构成了并联谐振回路,所以可以通过网络分析仪测得此谐振回路的谐振频率,然后通过下式计算确定分布电容的大小:
其中,f为谐振频率,L为初级电感量,C为分布电容。表1所列为上述变压器的静态参数测试结果。
由表1数据可知,PCB线圈变压器在分布参数上均优于线包绕制变压器。这归因于PCB线圈易于控制线间距和层间距。
3 次级加满载时初级电压波形及分析
测试电路采用移相全桥拓扑结构,控制芯片采用UCC3895,开关管是IRFP460,芯片输出开关管驱动频率为146.8 kHz。输入电压为50 V,输出满载功率为160 W。图3所示为8次级高压变压器实物图。
图4所示为线包绕制的变压器初级满载波形图,图5所示为采用PCB线圈的变压器初级满载波形图。
通过图4和图5所示的两个波形图对比可知,分布参数已经对电路的性能产生了影响。初级漏感越大,尖峰电压幅度越大;分布电容越大,初级波形的完整性越差。这是因为分布电容与电路中的寄生参数(如漏感和开关管寄生电容等)产生了衰减振荡;同时开关管损耗增加,使得变换回路的效率难以提高。在让输入电压从0 V缓慢抬升到50 V调试的过程中,线包绕制变压器会发出“吱吱”的噪声,换上PCB线圈变压器后此现象解除。
4 结语
本文通过两种不同工艺所绕制的变压器说明了分布电容对电路性能产生的影响,同时,PCB线圈迭绕方式也有效地减少了分布电容,并提高了电路的工作性能,达到了优化设计的目的。
上一篇:电容式触摸感应界面实现方案
下一篇:MOS管击穿的原因及解决方案
- 热门资源推荐
- 热门放大器推荐
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况