在同步辐射应用领域内,加速器具有特殊的运行方式,它要求给磁铁系统供电的稳流电源动态稳定性必须优于1´10-4,输出电流纹波要小于5´10-4。所以现针对磁铁电源,研制开发一套基于DSP技术的多路电源动态参数监控系统,可对电源进行遥控操作和实时显示其状态,同时实现对整个电源纹波、电网电压的实时监控、记录,并对纹波、电网电压进行频谱分析。
2 系统组成框图
本系统主要由单片机80C196、可编程单片机外围芯片PSD4235和DSP芯片TMS320VC5402构成。它们之间的通信通过16位的双口RAM(IDT公司的ID7133)来实现。
80C196和PSD4235主要完成人机接口的功能,包括液晶显示、电源状态开关量输入、输出电源控制操作、CAN总线通信及系统实时时钟。TMS320VC5402则主要负责处理数据,对电源纹波和电网电压进行频谱分析;其主要资源有8路A/D、SRAM、FLASH、总线驱动和锁存等。
双口RAM在系统中的功能是将80C196接收到的外界数据交给TMS320VC5402,同时TMS320VC5402需要显示或通信的数据也通过它送给80C196。其结构示意图见图1所示。
3 系统的主要硬件
3.1 PSD4235G2芯片
WSI公司的PSD4235G2将存储器、I/O端口、PLD等单片机集成于一个芯片中。能与多路复用16位总线的Intel 80C196直接接口,大大简化了硬件电路,使系统的设计、完善变得十分方便.
PSD4235G2内部集成了4Mbit闪速存储器,64Kbit SRAM,具有16个输出微单元和24个输入微单元的CPLD,译码PLD,52个单独可配置I/O端口引脚,内置符合JTAG的串行接口。在系统中,它与80C196的硬件连接如图2所示。
[page]3.2 CAN通信电路
CAN总线具有通信速率高、可靠性高、连接方便和性能价格比高等优点。CAN接口由独立控制器SJA1000和CAN控制器接口82C250组成,在这两者之间接6N137高速光耦,用DC-DC变换器隔离电源,提高抗干扰能力。
3.3 实时时钟电路
系统选用实时时钟芯片DS12887,它是目前主流芯片。
3.4 双口RAM器件
系统选用了IDT公司的高速2K×16 位的双口RAM产品 IDT7133,其最高速度可以达到20ns。控制线和I/O线是完全独立的两个接口,可以对两个端口进行完全异步的读写操作。当两个接口同时对存储器的同一单元进行操作时,IDT7133的忙逻辑BUSY将会有硬件指示。
3.5 DSP处理器
DSP是整个系统数据处理的核心器件。我们采用了TI公司的TMS320VC5402。它工作速率可达100MIPS,具有先进的多总线结构(1条程序总线、3条数据总线、4条地址总线),内置4K×16bitROM和16K×16bitRAM。C5402具有高性能、低功耗和低价格等特点。图3 所示为DSP的地址总线与数据总线布局。
C5402采用3.3V和1.8V电源供电,其中I/O采用3.3V供电,芯片的核采用1.8V供电。而实际常用的只有5V电源,所以选用了TPS767D301电源转换芯片,可由5V转化为3.3V和1.8V。
外部存储器是DSP系统中最主要的部件之一。系统选用AM29LV400B(256K×16bit)作为 FLASH MEMORY,它存取速度快,最高可达到55ns;读写寿命长,可重复10万次。同时选用CY7C1021(64K×16bit)作SRAM,它是采用CMOS工艺制成,访问速度可达12ns。
同时,由于DSP的地址总线与数据总线的驱动能力是有限的,当负载比较大时,需要对它的负载能力进行扩展,以保证系统能稳定工作。并且DSP的输入、输出口也有限,往往需要进行扩展。所以,我们选用SN74LVTH16244和SN74LVTH16245作总线驱动和隔离。
电源的模拟信号经过A/D芯片MAX125(8通道14位带并行输出)转换后,变成数字信号送入C5402内进行傅里叶变换,计算信号的频谱。
4 系统的软件设计
系统的软件主要包含单片机80C196和DSP两大部分,采用C语言和汇编语言混合编程。单片机MCU与DSP之间通过双口RAM交换数据。MCU软件主要是系统I/O、与DSP通信、LCD显示驱动、键盘扫描、时钟日历等程序。
DSP软件主要包含科学计算程序、数据采集程序、FLASH管理、与MCU通信等。
5 结论
经过实验证明,根据本文内容设计并实现的电源动态参数监控系统,在实际运用中是可行有效的。
参考文献
[1] 王念旭等. DSP基础与应用系统设计. 北京:北京航空航天大学出版社,2001.8.
[2] 戴逸民等. 基于DSP的现代电子系统设计. 北京:电子工业出版社,2002.5.
[3] TMS320C5X User’s Guide. Texas instruments,1990.
上一篇:空分装置控制系统的电源系统
下一篇:14KV—5KW高压电容充电电源
推荐阅读最新更新时间:2023-10-18 16:29
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- CGD和Qorvo将共同革新电机控制解决方案
- 是德科技 FieldFox 手持式分析仪配合 VDI 扩频模块,实现毫米波分析功能
- 贸泽开售可精确测量CO2水平的 英飞凌PASCO2V15 XENSIV PAS CO2 5V传感器
- 玩法进阶,浩亭让您的PCB板端连接达到新高度!
- 长城汽车研发新篇章:固态电池技术引领未来
- 纳芯微提供全场景GaN驱动IC解决方案
- 解读华为固态电池新专利,2030 叫板宁德时代?
- 让纯电/插混车抓狂?中企推全球首款-40℃可放电增混电池,不怕冷
- 智驾域控知多少:中低端车型加速上车,行泊一体方案占主体
- Foresight推出六款先进立体传感器套件 彻底改变工业和汽车3D感知